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Abstract Some organisms maintain a battery of defensive strategies against their
exploiters (predators, parasites or parasitoids), while others fail to employ a de-
fence that seems obvious. In this paper, we shall investigate the circumstances un-
der which defence strategies might be expected to evolve. Brood parasites and
their hosts provide our main motivation, and we shall discuss why the reed war-
bler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection
strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus,
while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not
an egg-rejection strategy as a defence against Horsfield’s bronze-cuckoo Chryso-
coccyx basalis. We suggest that the answers lie in strategy-blocking, where one
strategy (the blocking strategy) prevents the appearance of another (the blocked
strategy) that would be adaptive in its absence. This may be common in exploiter–
victim systems.

Keywords Evolutionary ecology · Host-parasite systems · Brood parasites ·
Defence strategies · Rare-enemy effect

1. Introduction

1.1. General introduction

Some organisms employ multiple defence strategies against their exploiters.
Bacteria produce many restriction enzymes that attack the genetic material of the
bacteriophage species that parasitise them (Levin and Lenski, 1983). The verte-
brate immune system is a multi-faceted defence employing many cell types (Roitt
and Delves, 2001; Holmes, 1983). Plants tend to synthesise many toxic chemicals
as a defence against herbivores (Emlen, 1984, pp. 461–462). Fifty years ago, flax
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Linum usitatissimum was discovered to have 26 genes conferring resistance to a
fungal pathogen, the rust Melampsora lini (Flor, 1955, 1956). On the other hand,
there are cases in which a defence strategy that does not seem evolutionarily
unattainable is nevertheless not employed. In our focal example, reed warblers
may reject common cuckoo eggs but do not reject their chicks (Davies, 2000).
Central American legumes defending themselves against the bruchid beetles that
eat their seeds do so by producing either small numbers of poisonous seeds or such
large numbers of innocuous seeds that the beetles cannot possibly consume them
all, depending on the species, but none makes use of both strategies by producing
large numbers of poisonous seeds (Janzen, 1969). In a controversial study, Smith
(1968) has suggested that some hosts (oropendolas and caciques) benefit from
brood parasitism by cowbirds because the cowbird chicks remove botfly larvae
from the host chicks. As a defence against the botfly, the hosts either tolerate
cowbirds or nest near wasps or stingless bees (which provide some protection
against the flies), but not both (Smith, 1979). Swollen-thorn acacias (Acacia spp.)
in Central America have evolved a mutualistic relationship with Pseudomyrmex
ants (Janzen, 1966). The acacias provide the ants with food and shelter, while
the ants defend the acacias from herbivores. Other species of acacia synthesise
toxic cyanogenic glycosides, which confer protection at least against mammalian
herbivores, but none employs both these defence strategies (Rehr et al., 1973).

It is often easy to see why multiple strategies have evolved. First, they may
be an adaptive feature of a defence against multiple enemies. The suite of
bacterial restriction enzymes and the vertebrate immune system have presumably
evolved as such a general defence, the enemies in the case of vertebrate immunity
including mutant somatic cells (Marchalonis, 1977). The same is to an extent true
of the toxins produced by plants as a defence against herbivores, which are in
the vast majority of cases broad-spectrum adaptations to a large suite of enemies
(Futuyma, 1983). It is an open question why a complex immune system has not
evolved in invertebrates (Marchalonis, 1977), which generally handle invading
organisms by phagocytosis and encapsulation (Salt, 1970). The effect of multiple
enemies has been reviewed by Sih et al. (1998), and we shall not consider this
further. Second, multiple defence strategies may be the result of a coevolutionary
arms race (Dawkins and Krebs, 1979). In the paper that brought the word
coevolution into general use, Ehrlich and Raven (1964) suggested that toxic
compounds developed by plants as a general defence against herbivores provide
competition-free resources for herbivores (in this case butterflies) that overcome
those defensive barriers. The plant may then produce a further toxin as a defence
against the tolerant butterfly (Gilbert, 1971). Certainly, the number of toxins
produced by plants seems to increase with the local density of butterflies (Levin,
1976). Alternatively, once the number of tolerant species becomes small, the plant
may use a more specialised strategy to defend against them. Heliconius butterflies
at the larval stage are specialist consumers of passion-vines (Passifloraceae),
which have evolved two specialised defences against them. They produce hooked
hairs that immobilise newly hatched larvae, and structures that mimic Heliconius
eggs, since Heliconius butterflies tend to avoid laying eggs on plants that already
have eggs laid on them (Gilbert, 1983). Similar arms races may be seen in plant–
pathogen systems. The gene-for-gene relationship discovered in the flax–rust
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system by Flor (1956), where each of the 26 rust-resistance genes in the flax has a
counteracting virulence gene in the rust, is a striking example. Gene-for-gene rela-
tionships have been found in other plant–pathogen systems, mostly involving crop
plants (Silvertown and Doust, 1993), and are also seen in plant–herbivore systems,
such as the interaction between resistance genes in wheat and virulence genes in
the hessian fly Mayetiola destructor (Hatchett and Gallun, 1970; Gallun, 1977).

It may be more difficult to see why in some cases the coevolutionary arms race
has not taken place. Reed warblers have evolved to recognise common cuckoo
eggs, cuckoos have evolved to mimic reed warbler eggs, but reed warblers have not
subsequently evolved to recognise cuckoo chicks. In this and the other examples
mentioned above, the defence strategy that is employed is certainly imperfect and
it seems clear that to employ a further strategy would improve defensive success,
yet that strategy has not evolved. There do not seem to be evolutionary constraints
that prevent the second defence strategy from evolving, although of course it could
be that there has been insufficient evolutionary time for it to do so. In this paper,
we shall investigate alternatives to this evolutionary lag hypothesis.

1.2. Rare-enemy effect and strategy-blocking

One of the crucial ideas in this paper is the rare-enemy effect, introduced by
Dawkins (1982). He argued that because there are costs involved in any adapta-
tion, it is not advantageous to develop a defence against a rare enemy. In the case
of the reed warbler and the common cuckoo the enemy is not particularly rare,
with brood parasitism rates often exceeding 20%. However, we shall show that
when there are two possible defence strategies that may be deployed against the
parasite, each of which is advantageous on its own, an extension of the rare-enemy
effect may be used to understand when a combination of the two is advantageous.
One strategy may prevent the appearance of the other, a phenomenon we shall call
strategy-blocking. Let us define a resource trade-off between two defence strategies
to occur when the employment of one strategy affects the resources available for
employing the other, for example if there were a fixed defence budget to be divided
between two strategies in the optimal way. A resource trade-off in defence against
two enemies is considered by Pointrineau et al. (2003). Such a trade-off increases
the probability of strategy-blocking, but we shall show that it is not necessary for
strategy-blocking to occur, and shall not include it in our models.

1.3. Brood parasite natural history

The Eurasian cuckoo Cuculus canorus is a brood parasite, laying its eggs in the nest
of a host species. Typical hosts in Europe are reed warblers, great reed warblers,
dunnocks, meadow pipits, robins, and pied wagtails. The female cuckoo visits the
host nest during the host’s laying period, picks out a host egg, lays her own in its
place, and flies off with and eats the host egg. The whole visit lasts about 10 s. Most
cuckoo hosts (although not the dunnock) reject eggs that look unlike their own,
for example by ejecting them from the nest, and as a consequence the cuckoo egg
is usually mimetic, similar to its host’s in size, colour, and patterning. When the
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cuckoo chick hatches, it balances the host eggs or chicks on its back and pushes
them out of the nest. The adult hosts do nothing to prevent this happening, and
show very little or no chick-rejection behaviour, although a recent report suggests
some rejection by desertion (Grim et al., 2003). On average, in the UK about 5%
of reed warbler nests are parasitised, although locally the parasitism rate can rise
to over 20%; other species with local parasitism rates of over 40% have been ob-
served (Davies, 2000).

Horsfield’s bronze-cuckoo Chrysococcyx basalis is an Australian brood-parasite
with similar behaviour to the common cuckoo’s as adult and chick. A typical host
is the superb fairy-wren Malurus cyaneus. This host very rarely rejects parasitic
bronze-cuckoo eggs, unless they are laid before its own laying period has begun or
after it has finished. On the other hand, chick rejection does occur, by desertion of
broods containing a single chick (Langmore et al., 2003). Effective parasitism rates
in this study ranged from 16 to 32%.

Lotem (1993) explained the lack of chick rejection by the hosts of the com-
mon cuckoo as follows. There is some evidence that hosts must learn to recog-
nise their own eggs, by imprinting on their first clutch. There is a problem if this
clutch is parasitised, as they would also learn the parasite egg as their own, but
at least future unparasitised attempts could be successful. If hosts had to learn
to recognise their own chicks, parasitisation of the first clutch by a parasite that
ejects host young would be disastrous, as the hosts would not recognise their own
chicks and would forfeit all future reproductive success. Some brood parasites do
not eject host young, and this argument does not hold; until recently such cases
were the only ones where chick rejection had been observed. Examples (Davies,
2000) are a score of species of African finches (paradise whydahs, waxbill why-
dahs and indigobirds) that parasitise closely related grassfinches, and screaming
cowbirds Molothrus rufoaxillaris that parasitise bay-winged cowbirds Molothrus
badius. However, the recent discovery of chick rejection by hosts of ejecting par-
asites (Langmore et al., 2003) has cast doubt on the universality of Lotem’s argu-
ment. It does not explain why cuckoo chick rejection has not evolved as an innate
trait, and (Langmore et al., 2003) failed to find any evidence that chick-rejecting
superb fairy-wrens ever mistakenly imprint on their brood parasites.

A comprehensive review of brood-parasite natural history may be found in
Davies (2000).

1.4. Previous models for rejection by brood parasites

Many previous models for egg-rejection have focused either on population dy-
namics (May and Robinson, 1985) or on population genetics (Rothstein, 1975;
Kelly, 1987; Brooker et al., 1990). Takasu and his co-workers (Takasu et al., 1993;
Takasu, 1998) were the first to include both ecological and evolutionary aspects of
the problem. Planqué et al. (2002) modified these models to include chick rejec-
tion as well as egg rejection, and made some progress towards understanding why
chick rejection is not observed in the common cuckoo and reed warbler system.
Their model neglected sexual reproduction, instead assuming that the number of
offspring of each defensive type was proportional to the fitness of that type, and we
shall do the same. This makes no difference to our analysis except when there is a
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population mixed for defensive type, and then only in determining the proportion
of each.

2. Parasitoid or brood-parasite model

2.1. Monomorphic populations

The archetypal model for host–parasitoid systems is Nicholson–Bailey (1935),

P′ = c(1 − f (P))H, H′ = RHf (P), (1)

where P and H are the parasitoid and host populations in year t , P′ and H′ those
in year t + 1, R the basic reproductive ratio of the host population, f (P) the frac-
tion of hosts that escape parasitism, and c the mean number of parasitoids from
each parasitised host that survive to breed. In this model, parasitoids always arise
from parasitised hosts: defence is not taken into account. Let us assume instead
that a fraction 1 − g of parasitised hosts successfully defend themselves against
parasitism, and that this defence is cost-free. The model becomes

P′ = cg(1 − f (P))H, H′ = RHf (P) + RH(1 − g)(1 − f (P)). (2)

where c is now the mean number of parasitoids from each unsuccessfully defended
parasitised host that survive to breed.

However, even in the absence of the parasite, a defence strategy may be costly
to maintain. For example, it may be costly for a cuckoo host to adopt a strat-
egy of rejecting eggs that look unlike its own, even in the absence of any cuck-
oos, if recognition errors imply that it sometimes rejects some of its own eggs
(Davies, 2000), and it may be costly for an insect to maintain an immune defence
against parasitoids even in their absence (Kraaijeveld and Godfray, 1997; Sasaki
and Godfray, 1999). Let the relative pay-off of the host defence strategy without
parasitism be θ , i.e. Rθ is the expected number of offspring per defending host per
year in the absence of parasitism and intra-specific competition. Let the relative
pay-off of the host defence strategy with parasitism be ϕ, i.e. Rϕ is the number of
offspring that each parasitised defending host is expected to produce per year in
the absence of intra-specific competition. If a host is parasitised, the parasite attack
is successful with probability g, which we shall call the attack success probability.
Host defence is successful with probability 1 − g, and in this case host offspring are
produced. Then the expected number of host offspring conditional on successful
defence is Rϕ/(1 − g), in the absence of intra-specific competition. We would ex-
pect this to be no greater than the expected number Rθ of offspring produced in
the absence of parasitism, and we shall write

ϕ = (1 − g)θψ, with ψ ≤ 1. (3)

We shall refer to ψ as a relative pay-off factor. If successful defence is not costly
then we have ψ = 1, ϕ = (1 − g)θ , but of course a host may be weakened by
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an attack even if its defence is finally successful, in which case we have ψ < 1,
ϕ < (1 − g)θ . In either case, the unconditional expected number of offspring of a
parasitised host is Rϕ < Rθ . The system becomes

P′ = cg(1 − f (P))H, H′ = RHθ f (P) + RHϕ(1 − f (P)). (4)

We shall modify this model to allow survival between seasons and to include
self-limitation of the host. We obtain

P′ = (1 − µ)P + cg(1 − f (P))H, H′ = �(H; k)Hw(P), (5)

where the relative fitness function w is given by

w(P) = 1 − ν + Rθ f (P) + Rϕ(1 − f (P)). (6)

Here µ and ν are the annual probabilities of death for the parasites and the hosts,
and R the host annual basic reproductive ratio. An important combination of pa-
rameters is the host (lifetime) basic reproductive ratio R0 = R/ν, the expected
number of offspring per host over a lifetime in the absence of parasitism, intra-
specific competition and defence costs. With defence costs, this basic reproductive
ratio is reduced to R0θ . The function � in (5) is a self-limitation function such as

�(H; k) = 1
1 + H/k

, (7)

which models contest competition limiting the host population size in the absence
of parasites or defence to a carrying capacity K = k(R − ν) = kν(R0 − 1) (Skellam,
1951). Hence k is a scaled version of the host carrying capacity, and will be used
later as a bifurcation parameter; however, we shall usually write �(H), suppressing
explicit mention of the dependence of � on k. More general functions � satisfying
the conditions in the Appendix may also be used.

2.2. Dimorphic populations

Finally, we shall modify the model to allow two host types Hi and Hj . Let fi (P)
(or f j (P)) be the probability that a host of type i (or j) is not parasitised when
the parasite population is P; for simplicity we shall take fi (P) = f j (P) = f (P) =
exp(−a P), although in some cases different host defence strategies could result in
different parasite searching efficiencies a. More general functions f may also be
considered, as long as f is a decreasing convex function,

f ′(P) < 0, 1 − f (P) + P f ′(P) > 0, (8)
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satisfying f (0) = 1 and f (P) → 0 as P → ∞. A straightforward generalisation of
(5) gives

P′ = (1 − µ)P + ci gi (1 − f (P))Hi + c j g j (1 − f (P))Hj ,

H′
i = �(H)Hiwi (P), H′

j = �(H)Hjw j (P), (9)

where H = Hi + Hj and the relative fitness function wi is given by

wi (P) = 1 − ν + Rθi f (P) + Rϕi (1 − f (P)), (10)

and similarly for w j . We have made the simplifying assumption that the two host
types are ecologically identical from the point of view of their competitive abilities
and requirements, so that the self-limitation depends only on the total host pop-
ulation H = Hi + Hj . With the cuckoo example in mind, we have assumed that
the costs of the defence strategy impact on fecundity alone, reducing it from R to
Rθi for type i , where 0 < θi ≤ 1, and similarly for type j , but an increase in the
mortality ν gives qualitatively the same results.

In the absence of the parasite, the model becomes

H′
i = (1 − ν + Rθi )Hi�(H), H′

j = (1 − ν + Rθ j )Hj�(H).

Dividing one equation by the other,

(
Hi

Hj

)′
= 1 − ν + Rθi

1 − ν + Rθ j

Hi

Hj
,

so that coexistence is only possible if θi = θ j : otherwise, the type with the higher
value of θ will drive the other type to extinction from any initial conditions. This
is a straightforward application of the principle of competitive exclusion, which
implies that a population employing one strategy tends to exclude one employing
another. The extension to more than two host types is clear; the type with the least
costly defence strategy (in the absence of the parasite) prevails. The best strategy
of all in this situation, of course, is to refrain from costly defence altogether. We
shall refer to this naive strategy as i = 0, so that θ0 = 1.

3. Analysis

The analysis consists of a determination of the bifurcations that occur as k, the
scaled host carrying capacity, increases. The bifurcation diagram is shown in
Fig. 1(b). On a first reading, it may be helpful to skip to the next section where
the conclusions are summarised.
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3.1. Single-host type

Let us first consider the case of a single-host type i , so that the model becomes

P′ = (1 − µ)P + cg (1 − f (P)) Hi ,

H′
i = �(Hi )Hiwi (P) = �(Hi )Hi (1 − ν + Rθi f (P) + Rϕi (1 − f (P))) .

The basic reproductive ratio for host i is R0θi = Rθi/ν = Ri , say. As long as
Ri > 1, Rθi > ν, failing which host type i goes extinct under any circumstances
and which we shall assume from now on, there is a host-only steady state (0, H0

i ),
where H0

i is the unique solution of �(H0
i ; k)(1 − ν + Rθi ) = 1, and is an increasing

function of k since ∂ H
∂k = − ∂�

∂k / d�
dH . (For �(H) = 1/(1 + H/k), H0

i = k(Rθi − ν) =
kν(Ri − 1).) It is stable to perturbations in the (P, Hi ) plane for k small, and
loses stability to a coexistence state (P∗

i , H∗
i ) via a transcritical bifurcation at

k = kip. At the bifurcation point P∗
i = 0, H∗

i = H0
i = µ/(cgi | f ′(0)|), and kip is

the unique solution of �(H∗
i ; kip)(1 − ν + Rθi ) = 1. (For �(H) = 1/(1 + H/k),

kip = µ/(cgi (Rθi − ν)| f ′(0)|).) As we showed in Section 2.2, the only host-only
steady state (0, H0

i ) stable to the addition of any of the other host types is that with
i = 0. Hence, the bifurcation point k = k0p plays a special role, and we shall write
k0p = kp.

3.2. Coexistence of the parasite with a single-host type

The coexistence state (P∗
i , H∗

i ) with P∗
i > 0 for k > kip satisfies

µP = cg(1 − f (P))H, (11)

(�(H))−1 = w(P) = 1 − ν + Rθ f (P) + Rϕ(1 − f (P)), (12)

where we have dropped the asterisks and the subscripts. It is straightforward (al-
though somewhat long-winded, see Appendix) to show that P∗

i and H∗
i are both

increasing functions of k. Equation (11) is satisfied when P = 0 (giving the host-
only steady state (0, H0

i )), or when (P, H) lies on the curve

H = µ

cg
P

1 − f (P)
.

On this curve,

dH
dP

= µ

cg
1 − f (P) + Pf ′(P)

(1 − f (P))2
.

If f is convex then 1 − f (P) + Pf ′(P) > 0, and the non-trivial branch of (11) de-
fines H as an increasing function of P. On the other hand, Eq. (12) defines H as a
decreasing function of P; the curves cross in the positive quadrant, and the coex-
istence state is unique, if k > kip. Its stability is determined by the eigenvalues of
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the Jacobian matrix Ĵ at the steady state given by

Ĵ = Ĵ (P, H) =
(

Ĵ11 Ĵ12

Ĵ21 Ĵ22

)

=
(

1 − µ − cg f ′(P)H cg(1 − f (P))

�(H)HR(θ − ϕ) f ′(P) (� ′(H)H + �(H))w(P)

)
. (13)

Now
tr Ĵ = 1 − µ − cg f ′(P) + (� ′(H)H + �(H))w(P),

det Ĵ = (1 − µ − cg f ′(P)H)(� ′(H)H + �(H))w(P)

− cg(1 − f (P))�(H)HR(θ − ϕ) f ′(P).

Clearly tr Ĵ > 0 by (8) and (A.1), so the Jury conditions for stability are tr Ĵ <

det Ĵ + 1, det Ĵ < 1. We have

1 + det Ĵ − tr Ĵ = 1 + (1 − µ − cg f ′(P)H)(� ′(H)H + �(H))w(P)

− cg(1 − f (P))�(H)HR(θ − ϕ) f ′(P)

− 1 + µ + cg f ′(P) − (� ′(H)H + �(H))w(P)

= −µ� ′(H)Hw(P)

− cg f ′(P)(� ′(H)H + �(H))w(P)

− cg f ′(P)�(H)R(θ − ϕ)(1 − f (P)) > 0,

where we have several times made use of the fact that �(H)w(P) = 1. However, it
is not necessarily true that det Ĵ < 1. In particular, if µ = ν = 1, �(H) = 1, θ = 1,
g = 1, the model reduces to that of (Nicholson and Bailey, 1935), which is unstable
to growing oscillations, and det Ĵ = R log R/(R − 1) > 1 for R > 1. A value of ν

less than 1 or a limiting function �(H) both have a tendency to stabilise the steady
state. In particular, the steady state is stable for typical values of the parameters
in the literature for the cuckoo system (Cramp, 1988; Cramp and Brooks, 1992).
Henceforth, we shall assume that the system does not exhibit a Naimark–Sacker
bifurcation (often referred to as a Hopf bifurcation for difference equations) for
relevant parameter values, so that oscillatory solutions do not occur. Naimark–
Sacker bifurcations were considered in Planqué et al. (2002).

3.3. Invasion of a second host type

Now, let us consider the possibility that host type j can invade the steady state of
a parasite coexisting with host type i . We assume that the (P, Hi ) subsystem has a
stable coexistence steady state (P∗

i , H∗
i ). In particular, this implies that

�(H∗
i )wi (P∗

i ) = 1. (14)
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Then, the full system has a steady state at (P∗
i , H∗

i , 0). Its stability is determined by
the eigenvalues of the Jacobian matrix given by

J (P∗
i , H∗

i , 0) =

⎛
⎜⎜⎝

Ĵ11(P∗
i , H∗

i ) Ĵ12(P∗
i , H∗

i ) cg j (1 − f (P∗
i ))

Ĵ21(P∗
i , H∗

i ) Ĵ22(P∗
i , H∗

i ) � ′(H∗
i )H∗

i w∗
i

0 0 �(H∗
i )w∗

j

⎞
⎟⎟⎠ ,

where w∗
i = wi (P∗

i ), w∗
j = w j (P∗

i ), and Ĵ is as in Eq. (13). The eigenvalues are
those of the Jacobian matrix Ĵ at the steady state of the (P, Hi ) subsystem, as-
sumed stable, and the invasion eigenvalue

λ = �(H∗
i )w j (P∗

i ) = �(H∗
i ) (1 − ν + Rθ j f (P∗

i ) + Rϕ j (1 − f (P∗
i ))) .

Hence, the type-i steady state can be invaded by type j if λ > 1,

�(H∗
i )w j (P∗

i ) > 1. (15)

Comparing this with Eq. (14), this is simply the condition that type j be fitter than
type i at the steady state, w j (P∗

i ) > wi (P∗
i ).

Similarly, a type- j steady state (P∗
j , 0, H∗

j ), with

�(H∗
j )w j (P∗

j ) = 1, (16)

can be invaded by type i if

�(H∗
j )wi (P∗

j ) > 1, (17)

wi (P∗
j ) > w j (P∗

j ). Note that mutual invasion and hence coexistence is not pos-
sible in the absence of competition, when �(H) = 1. For then, we must have
both w j (P∗

i ) > w j (P∗
j ) and wi (P∗

j ) > wi (P∗
i ), so (since each w is decreasing) both

P∗
i < P∗

j and P∗
j < P∗

i , a contradiction. This exclusion is what we would expect, of
course, since the two types are then in apparent competition with each other (Holt,
1977), limited by a single factor, the parasite.

Let us investigate the possibility that with competition there exists a bifurca-
tion point ki j beyond which type j invades (P∗

i , H∗
i , 0), giving a bifurcating branch

(P∗∗, H∗∗
i , H∗∗

j ) with neither H∗∗
i = 0 nor H∗∗

j = 0. This does not contradict the
principle of competitive exclusion since there are now two limiting factors, the
parasite and inter-type competition. Despite this, it seems at first sight that such a
branch cannot exist, because at each value of P (except at a finite set where the
fitness curves cross) there is a fittest host that must exclude all others. It is this
finite set that is the key to the bifurcation, because at any such bifurcation point,
�(H∗

i )w j (P∗
i ) = 1, so w j (P∗

i ) = wi (P∗
i ), and the two types i and j have equal fit-

ness. This gives

1 − ν + R(θ j − ϕ j ) f (P∗
i ) + Rϕ j = 1 − ν + R(θi − ϕi ) f (P∗

i ) + Rϕi ,
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so P∗∗ = P∗
i is the solution P, if any, of

f (P) = ϕ j − ϕi

θi − θ j + ϕ j − ϕi
. (18)

Let us assume (without loss of generality) that θi > θ j , i.e. that host type i is fitter
than host type j in the absence of parasitism. Then a necessary condition for such
a bifurcation is that ϕ j > ϕi , i.e. that host type j is fitter than host type i at high-
parasite populations P, as might be expected. If this condition and the conditions
on f hold, then (18) has a unique solution P = Pi j , with

wi (P) = w j (P) = 1 − ν + R
θiϕ j − θ jϕi

θi − θ j + ϕ j − ϕi
.

Then H = Hi j is given by Eq. (11). Moreover (by the conditions on � as a function
of k), the equation �(H; k)wi (P) = �(H; k)w j (P) = 1 can be solved for k = ki j as
long as wi (P) = w j (P) > 1, or

R(θiϕ j − θ jϕi ) > ν(θi − θ j + ϕ j − ϕi ). (19)

3.4. Coexistence of parasite and two host types

In this section, we assume that, of two host types i and j , i has the greater
pay-off when unparasitised, θi > θ j , while j has the greater pay-off when para-
sitised, ϕ j > ϕi . We assume that Eq. (19) holds, so that we can find the potential
bifurcation point ki j beyond which type j invades type i , and the values of P
and H there, given by Pi j and Hi j . We now investigate the coexistence steady
state (P∗∗, H∗∗

i , H∗∗
j ) for k > ki j . Construction of this bifurcating branch involves

solving the steady-state equations

P = (1 − µ)P + cgi (1 − f (P))Hi + cg j (1 − f (P))Hj ,

�(H)wi (P) = 1, �(H)w j (P) = 1.

This can be done near the bifurcation point as long as M is nonsingular, where

M =

⎛
⎜⎝

µ + cHgi f ′(P) −cgi (1 − f (P)) −cg j (1 − f (P))

�(H)w′
i (P) � ′(H)wi (P) � ′(H)wi (P)

�(H)w′
j (P) � ′(H)w j (P) � ′(H)w j (P)

⎞
⎟⎠ .

But, since wi (P) = w j (P), det M = �(H)(w′
i (P) − w′

j (P))� ′(H)wi (P)c(gi − g j )
(1 − f (P)) �= 0, M is nonsingular as long as gi �= g j , and there is a transcritical
bifurcation at k = ki j . We have wi (P) = w j (P), so that P is constant, equal to its
value Pi j at the bifurcation point, everywhere on the bifurcating branch. Host types
i and j have equal fitness everywhere on the branch, which uniquely determines
the parasite population P. We also have �(H; k)wi (P) = 1, so that the value of
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�(H; k) remains the same, everywhere on the bifurcating branch. This defines H∗∗

as an increasing function of k. (In the case �(H; k) = 1/(1 + H/k), the function is
given by H∗∗ = kHi j/ki j .) It remains to find the proportions of each type of host.
Let us define α by H∗∗

i = (1 − α)H∗∗, H∗∗
j = αH∗∗, so that α = 0 at the bifurcation

point. We have

µP∗∗ = cgi (1 − f (P∗∗))(1 − α)H∗∗ + cg j (1 − f (P∗∗))αH∗∗,

so that

α = gi (H∗∗ − Hi j )
(gi − g j )H∗∗ .

If gi > g j , α > 0 and the branch is biologically realistic for H∗∗ > Hi j , k > ki j , while
if gi < g j it is realistic for k < ki j . There is a further transcritical bifurcation at a
point kji , where α becomes equal to 1, Hi becomes extinct and only Hj persists,
which can be analysed in exactly the same way. This point is obtained by solving
the system �(H; k) = �(Hi j ; ki j ), g j H = gi Hi j , for H = Hji and k = kji . (In the
case �(H; k) = 1/(1 + H/k), kji = gi ki j/g j , Hji = gi Hi j/g j .)

3.5. Limiting behaviour as k → ∞

We have seen that the steady-state values P∗(k) and H∗(k) of P and H both
increase as k increases. Here, we shall investigate their limiting behaviour as
k → ∞. Since each pair of host types can only coexist in a finite k-interval, then
as k → ∞ we can restrict attention to a single-host type. Let us assume first that
Rϕ ≥ ν for this host type. In this case, we claim that P∗(k) → ∞, H∗(k) → ∞
as k → ∞. For if not they are both bounded (by (11)), so H∗(k) ≤ H̄, P∗(k) ≤
P̄, for constants H̄ and P̄ independent of k. Hence (since w is decreasing),
w(P∗(k)) ≥ w(P̄) ≥ 1 + R(θ − ϕ) f (P̄) = 1 + ε, say. Let k = k̄ be the unique solu-
tion of �(H̄; k) = (1 + ε)−1. Then (since � is increasing in H and decreasing in k),
�(H∗(k); k)w(P∗(k)) > 1 for k > k̄, contradicting Eq. (12) and verifying the claim.

The condition Rϕ ≥ ν, or R0ϕ > 1, implies that the host type can flourish what-
ever the parasite population P as long as k is sufficiently large. Let us now as-
sume that Rϕ < ν for every type. As before, we may restrict attention to a single-
host type. Since P∗(k) is an increasing function of k, we know that P∗(k) → ∞
or to a finite limit P̄ as k → ∞. First, we claim that P∗(k) tends to a finite
limit. For if not, w(P∗(k)) → 1 − ν + Rϕ < 1 as P∗(k) → ∞. Let k = k̄ be the
solution of w(P∗(k)) = 1. Then w(P∗(k)) ≤ 1 for k ≥ k̄, and �(H∗(k); k) < 1 for
all k, so �(H∗(k); k)w(P∗(k)) < 1, contradicting Eq. (12). Second, we claim that
P∗(k) → P∞ as k → ∞, where P∞ is the (unique and finite) solution of w(P) = 1,
(and hence H∗(k) → H∞, given by Eq. (11) with P = P∞). Clearly, it cannot tend
to a limit P̄ with w(P̄) < 1, by the argument above, so assume for contradiction
that it tends to a limit with w(P̄) > 1. Then H∗(k) → H̄ given by Eq. (11) with
P = P̄. Let k = k̄ be the (unique) solution of �(H̄; k) = 1/w(P̄) < 1. Then for
k > k̄, �(H∗(k); k)w(P∗(k)) > �(H̄; k̄)w(P̄) = 1, contradicting Eq. (12).
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4. Synthesis: Theoretical results

4.1. First view

Although we have only looked at two host types at a time, it is now easy to see
what happens as k increases in any system with any number of host types, unless
Naimark–Sacker bifurcations to oscillatory behaviour occur. The crucial features
of the system may be seen by plotting the graphs of the relative fitness functions
wi against parasite population P, as shown for two types in Fig. 1(a). The corre-
sponding bifurcation diagram is shown in Fig. 1(b).

As k increases, P increases, and the host type that survives is the fittest for that
P, i.e. the one with the highest value of the relative fitness function w. But it is
not quite as simple as that. First, P is not strictly increasing with k. So, at first, P
remains at 0 until k reaches a bifurcation point kp(= k0p), defined in Section 3.1. In
this interval, the host type is the one with the highest value of wi (0) = 1 − ν + Rθi ,
i.e. the one that does not defend itself against the parasite at all (i = 0). Beyond
kp, P starts to increase from zero, but at first the resident host type is still the non-
defender, as we would expect as a consequence of the rare-enemy effect (Dawkins,
1982). The next bifurcation occurs at the first crossing of the graph of wi with
another graph w j , at a bifurcation point ki j defined in Section 3.4. If gi > g j (which
is certainly true if i = 0), then P again stops increasing with k at this point, and
remains constant until the next bifurcation point kji defined in Section 3.4. In the
interval (ki j , kji ), the proportion of the host that is of type j rises steadily from
0 to 1. When all the host is of type j , we are back in the single-host case and P
starts to increase again. On the other hand, if gi < g j , host type j immediately
replaces host type i beyond ki j , and P continues to increase without a break. In
either case, we are back to the case of a single-host type, and the same process of
invasion and eventual or immediate fixation of a new type may occur again. The
limiting behaviour as k → ∞ depends on whether there exists a host type i with
Rϕi > ν. If so, then we follow the curve of maximum w to its limit as P → ∞, and
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Fig. 1 (a) The fitness functions w0 and w1 for a naive and a defending host. (b) The correspond-
ing bifurcation diagram, with bifurcation points given approximately by kp(= k0p) = 20, k01 = 75,
k10 = 150. The population sizes are in arbitrary units.
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we end up on the fitness curve for the type with maximum ϕi , or maximum fitness
at high-parasite population P. If not, then we only follow the curve of maximum
w towards a limiting point (P, w) = (P∞, 1). However much k increases, parasite
population P does not increase beyond P∞, and the limiting host type is the one
that crosses w = 1 last.

4.2. Second view

An alternative way to present these results is to think of parasitism not in terms of
the parasite population P but in terms of the probability π = 1 − f (P) of suffering
parasitism. We shall refer to π as the parasitism pressure. Let vi (π) = (wi ( f −1(1 −
π)) − 1)/ν be the expected excess per capita lifetime production of host type i
when the parasitism pressure is π in the absence of intra-specific competition. A
positive value of vi implies that the population of host type i would grow in the
absence of competition, and a negative value that it would decay. The fitness curves
vi are now just straight lines in the (π, v) plane, joining the point (0, R0θi − 1) to
the point (1, R0ϕi − 1). Let θi > θ j and ϕi < ϕ j . Then, the lines for host types i and
j cross each other at (v, π) = (vi j , πi j ) with 0 < πi j < 1, where

πi j = θi − θ j

θi − θ j + ϕ j − ϕi
.

If i is the fittest strategy of all for π less than and sufficiently close to πi j , then
j is the fittest for π greater than and sufficiently close to πi j , and the stable host
type moves from i to j as the parasitism pressure moves up through πi j . If R0θi >

1 > R0ϕi , such a line cuts the π axis at (π∗
i , 0), where π∗

i = (R0θi − 1)/(R0(θi −
ϕi )), while if R0θi > R0ϕi > 1 the host can withstand arbitrarily high parasitism
pressure, and we define π∗

i = 1. We shall call π∗
i the maximum attainable parasitism

pressure for type i , written in terms of the probability of parasitism, although it is
in fact only attained in the limit as k → ∞ or if �(H) = 1. As k increases, the
last host type to remain is the one with the largest value of π∗

i . If more than one
host can withstand arbitrarily high parasitism pressure then the survivor is the one
with the highest value of ϕ. This is not surprising: the fact that k → ∞ implies that
we are again in a situation of apparent competition (Holt, 1977), where the hosts
are limited by a single factor, the parasite. The P∗ rule of apparent competition
states that when two species that do not compete directly with each other are both
limited by the same predator, then the one that can survive the higher predator
population P∗ will drive the other to extinction. Here, there is a parallel π∗ rule:
as k → ∞, the host type to survive is the one with the highest maximum attainable
parasitism pressure π∗.

5. Optimal defence portfolios

Let us consider now the question of an optimal defence portfolio. If you have two
potential defence mechanisms at your disposal (in evolutionary terms), do you
employ one of them, both of them, or none at all? If you employ just one, which
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one should it be? For example, should a parasitoid host attempt to encapsulate
parasitoid eggs, or to mount a phagocytic response against them, or both? Should
a cuckoo host attempt to remove cuckoo eggs, or cuckoo chicks, or both? We shall
label the single strategies 1 and 2, the combined strategy 3, and the strategy of
mounting no defence 0. The optimal portfolio depends on

� the fitness parameters θ1 and θ2 relating to the defence strategies 1 and 2 in the
absence of the exploiter, and the relationship of θ3 to them,

� the fitness parameters ϕ1 and ϕ2 relating to defence strategies 1 and 2 in the
presence of the exploiter, and the relationship of ϕ3 to them,

� the ecological parameters R0 = R/ν and k.

5.1. Strategy-blocking

We introduce the concept of strategy-blocking. Recall the definition of vi (π) as
the expected excess per capita lifetime production of host type i when the para-
sitism pressure is π , in the absence of intra-specific competition. If vi (π) > v j (π)
at a parasitism pressure π , then (unless strategy i does not appear for some rea-
son such as evolutionary lag), strategy j will not be observed at that parasitism
pressure. If vi (π) > v j (π) for all π ∈ (0, 1), then strategy j will not be observed
whatever the parasitism pressure, and we shall say that strategy i uncondition-
ally blocks strategy j . If, for all π ∈ (0, 1), either vi (π) > v j (π) or v0(π) > v j (π),
where strategy 0 is the naive strategy, we shall also say that strategy i uncondition-
ally blocks strategy j . If, for all π ∈ (0, 1), either v0(π) > v2(π) or v1(π) > v2(π)
and either v0(π) > v3(π) or v1(π) > v3(π), where strategy 3 is strategy 1 combined
with strategy 2, then we shall say that strategy 2, either on its own or combined in
strategy 3, is blocked by strategy 1. We argue that strategy-blocking is the key to
understanding why some defence strategies have not evolved. This is particularly
true in the apparently paradoxical case where (i) v2(π) > v0(π) for some π , but (ii)
v1(π) > v2(π) and (iii) either v0(π) > v3(π) or v1(π) > v3(π) for all π . Condition
(i) invites the conclusion that strategy 2 can be advantageous, but conditions (ii)
and (iii) imply that it cannot persist (on its own or in combination) in competition
with strategy 1.

Although π theoretically varies between 0 and 1, true parasitism pressures
are determined by ecological parameter values. We define conditional strategy-
blocking in such cases. For example, if vi (π) > v j (π) for all π ∈ (π, π), we say that
strategy i blocks strategy j conditionally in (π, π). Figure 2 illustrates conditional
strategy-blocking.

5.2. Naive versus defensive strategies

We start by comparing the naive strategy 0 with the defensive strategy 1. The
naive strategy has θ0 = 1 but ϕ0 = 0, while the defensive strategy has θ1 < 1 and
0 < ϕ1 = θ1ψ1(1 − g1) with ψ1 ≤ 1. If R0ϕ1 > 1, then the defending host can with-
stand arbitrarily high parasitism levels, and will drive the naive host to extinction at
high values of k. If R0ϕ1 < 1, then the defending host can withstand a probability
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(b) Strategy 1 partially blocked
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Fig. 2 Conditional strategy-blocking. The naive strategy blocks any defensive strategy if π is
small, and may do so for all feasible values of π , as shown in panel (a), even if the defence strategy
offers certain success. However, feasible values of π are determined by the ecological parameter
values, and the defensive strategy will not be blocked if both k and R0 are sufficiently high, as
shown in panel (b). For a sketch of the corresponding (k, R0) plane see Fig. 6(b), with say R0 = 1.1
for (a) and R0 = 1.4 for (b).

π∗
1 = (R0θ1 − 1)/(R0(θ1 − ϕ1)) of parasitism, while the naive host can withstand

π∗
0 = (R0 − 1)/R0. If π∗

1 < π∗
0 , then the defending host never invades, while if

π∗
1 = R0θ1 − 1

R0(θ1 − ϕ1)
= R0θ1 − 1

R0θ1(1 − ψ1(1 − g1))
>

R0 − 1
R0

= π∗
0 , (20)

it invades and drives the naive host to extinction for sufficiently high host carry-
ing capacity. This holds as long as R0θ1 − 1 is sufficiently high, i.e. the defending
host is fit enough in the absence of parasitism, and θ1 − ϕ1 is sufficiently low, i.e.
parasitism is not too costly to the defending host. For fixed defence strategy pa-
rameters θ1, ψ1 and g1, it holds if R0 is sufficiently high. For fixed R0, it holds if ψ1

is sufficiently close to 1 and g1 is sufficiently low, i.e. the conditional defence costs
are sufficiently small and the success probability of the defence is sufficiently high.
Note that even if g1 = 0, so that the defence strategy offers certain success, we still
require ψ1 to be sufficiently close to 1 for it to invade. Otherwise the strategy re-
sults in a Pyrrhic victory, defined by the Oxford English Dictionary as ‘a victory
gained at too great a cost’. In this case, the costs outweigh the benefits of defeating
the parasite, and it never invades the naive strategy.

5.3. Single defensive strategies

We now compare the defensive strategies 1 and 2, with θ1 > θ2, assuming as usual
that R0θ1 > 1, R0θ2 > 1. If ϕ1 > ϕ2 then strategy 1 is always fitter than strategy 2,
so a necessary condition for strategy 2 ever to invade is that it must be fitter at high
parasitism pressures,

ϕ2 = θ2ψ2(1 − g2) > θ1ψ1(1 − g1) = ϕ1.
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Fig. 3 The naive strategy is always fittest for low parasitism pressures. The defence strategy pa-
rameters (θi , ψi and gi ) are chosen so that strategy 2 is fittest at high parasitism pressure, but
strategy 1 is fittest at intermediate values. The figure shows the effect of varying R0. In panel (a)
R0 is low, and strategy 2 is blocked at any feasible parasitism pressure. In panel (b) R0 is higher,
and high values of k lead to parasitism pressure high enough for strategy 2 to be fittest. (Parameter
values θ1 = 0.95, θ2 = 0.8, g1 = 0, g2 = 0, ψ1 = 0.3, ψ2 = 0.5, (a) R0 = 1.6, (b) R0 = 2.0.)

Since ϕi = θiψi (1 − gi ), the strategy that is worse in the low-parasite environment
(strategy 2) can only pay off in a high-parasite environment if its unconditional
pay-off θ2 is not too small, its conditional pay-off factor ψ2 is not too small, and its
success probability 1 − g2 is sufficiently high, compared with those of strategy 1.
Note that even if g2 = 0, so that defence strategy 2 offers certain success, it offers
a Pyrrhic victory and is unconditionally blocked by strategy 1 if ψ2 < ψ1(1 − g1).
If R0ϕ2 > 1 then the condition ϕ2 > ϕ1 is sufficient as well as necessary for the
invasion of strategy 2 at sufficiently high carrying capacity, but if not we also
require the stronger condition that strategy 2 have a higher maximum attainable
parasitism pressure than strategy 1,

π∗
2 = R0θ2 − 1

R0(θ2 − ϕ2)
>

R0θ1 − 1
R0(θ1 − ϕ1)

= π∗
1 . (21)

This is satisfied if R0θ2 − 1 is sufficiently high and θ2 − ϕ2 is sufficiently small, i.e.
ψ2 sufficiently close to 1 and g2 sufficiently low.

5.4. Two concurrent defence mechanisms

Let θ3 and ϕ3 be the pay-off factors for the combined strategy in the absence of
and in the presence of parasitism, respectively. For a simple multiplicative model
for fitness in the absence of parasitism, we would have

θ3 = θ1θ2.

Other models are possible, but in general we expect that θ3 < θ1 and θ3 < θ2.
We need to derive a formula for ϕ3, or equivalently for the expected number of

offspring of a parasitised host of type 3. We shall assume that such a host employs
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strategies 1 and 2 concurrently with independent outcomes. Let the expected num-
ber of offspring per year conditional on successful defence be given by Rθ3ψ3, with
ψ3 < 1. For a multiplicative model, we would have ψ3 = ψ1ψ2. We shall see that
this is not appropriate for our particular brood-parasite systems, but in general we
expect ψ3 < ψ1 and ψ3 < ψ2. Since strategies 1 and 2 lead to successful defence
with probabilities 1 − g1 and 1 − g2, and strategy 3 is successful if either 1 or 2 is,
the assumption of independence implies that the probability of successful defence
with strategy 3 is 1 − g3, where g3 = g1g2. Hence,

ϕ3 = θ3ψ3(1 − g1g2). (22)

Let us consider the particular case that strategy 2 is unconditionally blocked by
strategy 1, θ2 < θ1 and ϕ2 < ϕ1. Is it nevertheless advantageous to use strategy 3,
strategy 2 in addition to strategy 1, if the parasitism pressure is sufficiently high?
Strategy 1 is fitter than strategy 3 in the absence of parasitism, since θ3 < θ1, so a
necessary condition for strategy 3 ever to prevail is that strategy 3 must be fitter at
high parasitism pressure, ϕ3 > ϕ1, which reduces to

θ3ψ3(1 − g1g2) > θ1ψ1(1 − g1). (23)

The interpretation of this is that the probability of success of strategy 3, mul-
tiplied by the pay-off factors inherent in using it, must outweigh the success of
strategy 1, multiplied by its pay-off factors, so that g2 cannot be too large and θ3

and ψ3 cannot be too small compared to θ1 and ψ1. In particular, a strategy with
g2 = 0 can offer a Pyrrhic victory, and will not be advantageous if θ3 and ψ3 are
too small.

Even if this inequality holds, we still require the additional condition that strat-
egy 3 have a higher maximum attainable parasitism pressure than strategy 1,

π∗
3 = R0θ3 − 1

R0(θ3 − ϕ3)
>

R0θ1 − 1
R0(θ1 − ϕ1)

= π∗
1 , (24)

for strategy 3 to be advantageous in an environment with a sufficiently high host
carrying capacity; we see in addition to the conditions above that R0θ3 − 1 must
not be too small and θ3 − ϕ3 must not be too large.

5.5. Two consecutive defence mechanisms

On the other hand, if the defence mechanisms are employed consecutively, the
pay-off factor of employing strategy 3 is only applied if (i) the host is parasitised
and (ii) strategy 1 is unsuccessful. However, if delay is costly, this factor may be
ψ ′

3 < ψ3, less than it would have been without the delay. Again assuming indepen-
dent outcomes for the defence strategies, we have

ϕ3 = θ3(ψ1(1 − g1) + ψ ′
3g1(1 − g2)). (25)
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Fig. 4 The particular case that strategy 2 offers certain success, yet is unconditionally blocked
by strategy 1. In panel (a) strategy 3 is adaptive for sufficiently high parasitism pressure, while in
panel (b) strategy 3 is also unconditionally blocked.

If ψ ′
3 = ψ3, so that the delay is cost-free, then this is always larger, and strategy 3 is

always fitter, than in the concurrent case (22). It always pays to delay strategy 2 in
this case, but this is not necessarily true if there are costs associated with the delay.
The condition ϕ3 > ϕ1 reduces to

θ3ψ3g1(1 − g2) > (θ1 − θ3)ψ1(1 − g1), (26)

where we have dropped the prime on ψ3. The probability of strategy 2 being suc-
cessful after strategy 1 has failed, multiplied by the pay-off factor inherent in using
strategy 2 in this situation, must outweigh the probability that strategy 1 on its
own succeeds, multiplied by the costs saved by not employing strategy 2 in this
situation. If this holds, then strategy 3 is advantageous in an environment with a
sufficiently high host carrying capacity as long as

π∗
3 = R0θ3 − 1

R0(θ3 − ϕ3)
>

R0θ1 − 1
R0(θ1 − ϕ1)

= π∗
1 , (27)

or

R0θ3 − 1
θ3(1 − ψ1(1 − g1) − ψ3g1(1 − g2))

>
R0θ1 − 1

θ1(1 − ψ1(1 − g1))
. (28)

This inequality holds if θ2 = 1, so that it is always worth keeping a strategy in re-
serve if it does not cost to do so. Otherwise, it fails to hold if R0θ3 − 1 is too small,
if θ3 or ψ3 is too small compared to θ1 or ψ1, or if g2 is too large.

6. Two brood-parasite systems

When a brood parasite lays an egg in the nest of its host, the host may in theory
attempt to defend itself by rejecting the egg (strategy 1), or by rejecting the chick
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(strategy 2), or by trying both of these consecutively (strategy 3). We shall estimate
the relevant parameters for two such systems where different defence strategies
are observed.

6.1. Common cuckoo and reed warbler system

Populations of reed warblers Acrocephalus scirpaceus parasitised by the common
cuckoo Cuculus canorus typically adopt one of two strategies, the naive strat-
egy (0) or the egg-rejector strategy (1). The chick-rejector strategy is not usually
adopted, either in combination with egg-rejection (3) or alone (2), although there
has been a report of chick rejection by desertion (Grim et al., 2003). Egg rejectors
are prone to recognition errors; Davies (2000, p. 67) estimates the probability that
an unparasitised egg-rejecting reed warbler rejects one or more of its own eggs,
a type-I or false-positive error, at 0.3 per brood, and the average number lost in
this case as 1.2 eggs, so the expected loss per brood is 0.36 eggs. Since reed war-
blers normally raise a single clutch of about four chicks in a year, we estimate θ1,
the pay-off for this strategy in the absence of parasitism compared to that for the
naive strategy θ0 = 1, as

θ1 = 1 − 0.36/4 = 0.91,

to two significant figures. There are no data on chick-rejection errors, of course,
since reed warblers do not reject chicks. We shall assume that, if they did, the
probability of a type-I error would be similar to that for eggs, so that

θ2 = 0.91.

The pay-off for the all-rejection strategy 3 depends on the assumptions made about
the probability of making false-positive errors at both stages and the pay-off in
this case, but this is a rare event and the details are not important. As a working
assumption, we take a multiplicative fitness model,

θ3 = θ1θ2 = 0.83,

to two significant figures.
Now, consider the pay-offs to parasitised reed warblers. The naive strategy has

ϕ0 = 0. Davies (2000, p. 66) estimates the probability that an egg-rejecting reed
warbler will recognise and eject a cuckoo egg in its nest as 0.7, so that

g1 = 0.3.

We assume chick rejection would have a similar failure rate,

g2 = 0.3.

When the cuckoo parasitises the nest it removes one (or sometimes more) of the
reed warbler eggs; again assuming a typical clutch size of four, this represents a cost
of at least 25% paid by all parasitised hosts. In addition, in rejecting a cuckoo egg
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the host may damage one of its own eggs, or it may reject one of them in addition
to the cuckoo egg. Davies (2000, p. 66) estimates this extra cost as 0.5 eggs, so that

ψ1 = 0.63.

The chick-rejection strategy also involves additional costs. When the cuckoo chick
hatches out, it sets about ejecting the reed warbler eggs and/or chicks from the
nest. Unless the reed warbler identifies it immediately, it will cause some damage.
It is difficult to estimate how much, but we must certainly have ψ2 < 0.75. We shall
take

ψ2 = 0.5.

Hence, we have

ϕ1 = θ1ψ1(1 − g1) = 0.50, ϕ2 = θ2ψ2(1 − g2) = 0.34.

The factor ψ2 (and not ψ1ψ2) is also the pay-off factor for the all-rejector that fails
to identify a cuckoo egg, so that the pay-offs are not multiplicative. Equation (25)
then gives

ϕ3 = 0.58.

Annual mortality rates for reed warblers are between about 49 and 63% (Cramp,
1988; Cramp and Brooks, 1992), and we shall take the mean of these, ν = 0.56.
The annual basic reproductive ratio is more difficult to estimate. For population
survival, we must have R > ν, and we shall take R = 0.8, so that the lifetime basic
reproductive ratio is

R0 = 1.4.

We shall discuss the effect of varying this later. Fortunately, it does not affect the
values πi j that determine the crossing points, only the maximum attainable para-
sitism pressures π∗

i .

6.2. Horsfield’s bronze-cuckoo and superb fairy-wren system

Superb fairy-wrens Malurus cyaneus have a complex egg-rejection strategy as
a defence against brood parasitism by Horsfield’s bronze-cuckoos Chrysococcyx
basalis (Langmore et al., 2003). In particular, they very successfully reject (i)
cuckoo eggs that are laid before they have started laying, by sewing the egg into
the lining of their nest (13 out of 15 cases recorded in Langmore et al. (2003)), and
(ii) cuckoo eggs that are laid after they have finished laying, by deserting the nest
(7 out of 8 cases in Langmore et al. (2003)). They very rarely reject cuckoo eggs
that are laid during their laying period (1 out of 53 cases in Langmore et al. (2003)).
Unless the cuckoo gives the game away by laying at the wrong time, the hosts are
(almost always) egg-acceptors. The cuckoo eggs are indeed mimetic, white and
finely speckled, but experiments have shown that the hosts will not reject model
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eggs even if they are blue with large polka dots (Brooker and Brooker, 1989).
However, they do seem to employ a chick-rejection strategy (Langmore et al.,
2003). A Horsfield’s bronze-cuckoo chick exhibits similar behaviour to a common
cuckoo chick, ejecting host eggs and/or chicks in the nest and becoming its sole oc-
cupant. The superb fairy-wren’s strategy is sometimes to desert a nest containing
a single occupant. The probability that they do this is about 0.4 when the occu-
pant is a cuckoo, so that g2 = 0.6, and about 0.26 when it is a fairy-wren. Why has
this strategy, which seems so error-prone, evolved? Let us compare pay-offs for
the egg-rejection (1) and chick-rejection (2) strategies as defences against cuckoos
that lay during the host laying period. Assuming that superb fairy-wrens are in-
deed egg-acceptors under these circumstances, we have no data on potential error
rates. We shall instead use the chick-rejection data, and take the probability of a
false-positive identification as 0.26, and that of failing to identify a cuckoo egg as
g1 = 0.6. A typical superb fairy-wren clutch size is three eggs, so

θ1 = 1 − 0.26/3 = 0.91,

to two significant figures. Just as the common cuckoo does, the Horsfield’s bronze-
cuckoo removes a host egg when it parasitises a nest, so that

ψ1 = 1 − 1/3 = 0.67

and

ϕ1 = θ1ψ1(1 − g1) = 0.24,

both to two significant figures. The cost of strategy 2 in the absence of parasitism
is the loss of the brood in 26% of cases when that brood consists of a single chick.
However, this only occurs in 4% of broods, so the expected loss cannot exceed
1%. We shall take

θ2 = 0.99.

The penalty for successfully employing the strategy is loss of the brood. However,
Brooker and Brooker (1998) argue that this penalty is less severe than it might
seem. Fairy-wrens tend to limit the number of young they raise in a season, to
avoid local over-crowding. The breeding season is long (20 weeks), and it is quite
possible for a pair of parasitised fairy-wrens to make up for lost time and raise the
same number of young as an unparasitised pair. This is especially true because a
bronze-cuckoo chick takes less time and resources to raise than a brood of fairy-
wrens. (In contrast, the reed warbler breeding season is short (10 weeks), and a
common cuckoo chick takes more time to raise than a brood of reed warblers.)
Let us take

ψ2 = 0.5,
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(a) Comparison of four reed warbler strategies
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(b) Comparison of four superb fairywren strategies
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Fig. 5 The excess fitness functions v0, v1, v2 and v3 for cuckoo hosts. Panel (a) represents the
common cuckoo and reed warbler system, and panel (b) the Horsfield’s bronze-cuckoo and superb
fairy-wren system. It can be seen that types 2 and 3 never make an appearance in (a), while types
1 and 3 never make an appearance in (b). In both cases, the all-rejection strategy would be fittest
if the parasitism pressure could attain sufficiently high values, which might occur for sufficiently
high values of k and R0. For a sketch of the corresponding (k, R0) plane, see Fig. 6(a), with say
R0 = 1.4.

and

ϕ2 = θ2ψ2(1 − g2) = 0.20.

The pay-off for strategy 3 in the absence of parasitism is θ3 = θ1θ2. With parasitism,
it is

ϕ3 = θ1θ2(ψ1(1 − g1) + ψ2g1(1 − g2)), (29)

as in the reed warbler case. Numerically,

θ3 = 0.9, ϕ3 = 0.35.

We shall take the same values for R and ν as for reed warblers, R = 0.8, ν = 0.56,
so that we again have

R0 = 1.4.

7. Results

The graphs of excess production vi of host type i against parasitism pressure π ,
for i = 0, 1, 2 and 3, are shown for both systems in Fig. 5. We can immediately
read off from these figures the possible behaviours of the systems for different
parasitism pressures π . Consider the common cuckoo and reed warbler system,
panel (a). For π low the naive host type will prevail. As π increases, a mutant
egg-rejecting host type would invade and go to fixation, beyond π = π01. If it were
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possible for π to increase towards 1, then a mutant all-rejecting type would in-
vade and go to fixation, beyond π = π13. However, this cannot happen. Instead
the line of zero excess production v = 0 is approached, at π = π∗

1 , and the hosts
continue to use a single (egg-rejecting) defence strategy. Neither chick-rejectors
nor all-rejectors ever invade. On the other hand, if egg-rejection never evolved
for some reason, a mutant chick-rejector would invade the naive type and go to
fixation beyond π = π02. Chick-rejection is advantageous in the absence of egg-
rejection, but the strategy is blocked by the use of egg-rejection. The Horsfield’s
bronze-cuckoo and superb fairy-wren system, panel (b), behaves similarly, but
with the roles of egg-rejection and chick-rejection reversed; in this case, the egg-
rejection strategy is blocked by chick-rejection. The ecology of these systems is
crucial to the results, since the strategy-blocking is conditional on the ecological
parameters.

Comparisons of parameter values between these systems show quite substantial
differences. The ϕ values in the first system are substantially greater than those
in the second, essentially because superb fairy-wrens are worse at recognising the
parasite chick than reed warblers are at recognising the parasite egg. In both cases
ϕ1 > ϕ2, so that egg rejection would be better than chick rejection in the hypothet-
ical case of certain parasitism, simply because of the delay and damage that chick
rejection entails. However, the difference that is crucial in determining which strat-
egy is blocked is in θ2, the relative pay-off of chick rejection in the absence of par-
asitism, when costs are a result of a false-positive identification of the host’s chick
as a parasite’s. The reed warbler pays a heavy price.

8. Discussion

8.1. Competitive exclusion of types

As a consequence of competition between types, under our assumptions of ecolog-
ically identical hosts, only one type will persist unless the parasitism pressure takes
one of a few special values πi j . However, a bifurcation analysis shows that in many
cases the parasitism pressure does indeed take one of these values for all values of
the bifurcation parameter k in non-trivial intervals [ki j , kji ] with ki j < kji . Figure 6
shows that populations with mixed strategies do exist in some regions of parameter
space. They are an important feature of host–parasite systems with more than one
host type, although it happens that for typical values of the ecological parameters
they are not seen in either of our host–cuckoo systems.

8.2. Pyrrhic victories and strategy-blocking

We have seen three kinds of Pyrrhic victory, where strategies that offer certain
success in defeating the parasite are nevertheless not advantageous, the first in
Section 5.2, the second in Section 5.3, and the third in Section 5.4. In Section 5.2,
the reason that the defence strategy is disadvantageous is that the ecological
parameters restrict host and therefore parasite populations, and that therefore
the rare-enemy effect comes into play. More explicitly, defence strategy 1 is only
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Fig. 6 (a) A diagrammatic representation of the surviving host types in the common cuckoo and
reed warbler system as a function of the ecological parameters R0 and k. For R0 < 1, both hosts
and parasites go extinct. In the region labelled “hosts 0 only,” parasites go extinct and only naive
hosts survive. In the rest of the diagram, both hosts and parasites survive, and the diagram shows
the surviving host types. The bifurcation diagram, Fig. 1(b), took R0 = 1.4, and the bifurcation
points there can also be read off from the line R0 = 1.4 shown here. Strategy 2 (on its own or in
combination with 1) is blocked for all k at R0 = 1.4. However, it can be seen that if both R0 and
k were sufficiently high then we would see hosts with the combined strategy 3 appearing, so that
the blocking is conditional on the ecological parameters. (b) A similar diagram for a hypothetical
system with ϕ3 < ϕ1. In this case, hosts of type 3 never appear, whatever the values of R0 and k,
and strategy 2 (on its own or in combination with 1) is unconditionally blocked.

advantageous if the parasitism pressure π exceeds a rarity threshold π01, and the
ecological parameters ensure that this cannot happen. This effect disappears if
both k and R0 are large (see Fig. 2(b) or Fig. 6(b)). In Section 5.3, defence strategy
2 was unconditionally blocked by defence strategy 1 simply because it was too
costly, despite its defensive success. In Section 5.4, strategy 2 was again too costly
to compete on its own with strategy 1, so it is clear that it will not appear alone as a
defence strategy. However, for high parasitism pressure it was fitter than the naive
strategy 0, and so it seems that in these circumstances it is better to use strategy 2
than not to use it. Why, then, is it not advantageous to use the combined strategy
3 at high parasitism pressure? Defence strategy 2 alone is fitter than the naive
strategy 0 if the parasitism pressure π exceeds a rarity threshold π02. A decision
to use strategy 3, i.e. strategy 2 in addition to strategy 1, is in effect a decision to
defend against potential parasitism pressure of at most g1. If g1 < π02, it is better
to refrain from defence strategy 2, because of the rare-enemy effect extended to
apply to the enemies that overcome defence strategy 1. Strategy 3 is unconditionally
blocked by strategy 1. Note that the relative timing of the defence strategies is not
important: in the reed warbler and common cuckoo example it is the cuckoo chick
that is rare, but in the fairy-wren and bronze-cuckoo example the rare enemy is
the bronze-cuckoo egg that is destined not to be rejected at the chick stage.

More generally, strategy 3 may be blocked by strategy 1 conditionally on the
parasitism pressure (or the ecological parameters), but the explanation is again in
terms of an extended rare-enemy effect. For given strategy parameters θi , gi and
ψi , the strategy-blocking in the two brood-parasite systems depends on the val-
ues of the ecological parameters R0 and k. Figure 6 is a diagram of the regions in
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ecological parameter space where each outcome occurs (a) for the common
cuckoo and reed warbler system and (b) for a hypothetical system with similar fea-
tures except that ϕ3 < ϕ1. In case (a), we see that if R0 and k were sufficiently large,
then the all-rejector strategy would invade, so that here the strategy-blocking is
conditional on the ecological parameters. The Horsfield’s bronze-cuckoo and su-
perb fairy-wren system is similar, except that strategy 2 replaces strategy 1. In nei-
ther of these systems would we expect to see both defence strategies employed un-
der normal circumstances, but might see them if R0 and k are exceptionally high. In
case (b), the strategy-blocking is unconditional: however high R0 and k, we would
never expect to see both defence strategies employed.

8.3. Attack success probabilities and the effects of exploiter coevolution

Let us assume that at some point in evolutionary time a defence strategy 2, ei-
ther on its own or combined in strategy 3, is blocked by a fixed defence strategy 1.
Let us further assume that as evolutionary time passes the exploiter adapts to de-
fence strategy 1, so that its attack success probability g1 increases, i.e. the defence
strategy 1 becomes less successful. Will this process always result in the eventual
unblocking of strategy 2? We shall look at the potential invasion of the combined
strategy 3; the potential invasion of the single strategy 2 is similar but simpler. Let
us first neglect ecological factors, and ask whether the (k, R0) plane, assumed to
look initially like Fig. 6(b), will always come to look like Fig. 6(a), so that strat-
egy 3 can invade for large enough k and R0. It does so if ϕ1, which initially satis-
fies ϕ1 > ϕ3, always decreases sufficiently that the opposite inequality is satisfied.
Looked at in a different way, we are interested in whether the curve ϕ1 = ϕ3 is
crossed as the attack success probability g1 increases. A sketch of the curve ϕ1 = ϕ3

is shown in Fig. 7. It always passes through the points (1 − θ3ψ3
θ1ψ1

, 0) and (1, 1) in the
(g2, g1) plane. For any fixed value of g2, and any initial value of g1, an increase
in g1 towards 1 eventually results in the curve being crossed and strategy 2 be-
ing unblocked. We have not taken account of any constraints that might limit the
maximum value of g1, and that might therefore prevent this from happening. Such
constraints could ensure that strategy 2 is permanently blocked. Let us now con-
sider the effect of ecological factors. For simplicity, we neglect intra-specific com-
petition and focus on the effect of varying R0, although the effect of varying k is
similar. Then, for potential invasion of strategy 3, we need not only ϕ3 > ϕ1 but also
π∗

3 > π∗
1 . The (g2, g1) plane is sketched in Fig. 7 in the two cases R0θ3ψ3 < 1 and

R0θ3ψ3 > 1. In either case, there is a critical value of ĝ2 of g2 such that if g2 < ĝ2

then strategy 2 is eventually unblocked (left arrows in Fig. 7), whereas if g2 > ĝ2

then it remains blocked (right arrows in Fig. 7). For given costs, i.e. given pay-off
factors θ3 and ψ3, then strategy 3 will eventually invade as long as the defence
success probability 1 − g2 is sufficiently high, but not otherwise.

We have focussed in this section on the effect of the defence success probability,
but similar results hold if we focus on the other parameters. For example, if θ3 and
g2 are fixed, and g1 again increases to 1, strategy 3 eventually invades as long as ψ3

is sufficiently high.
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Fig. 7 Diagrams showing the effect of exploiter evolution, (a) for R0θ3ψ3 < 1 and (b) for
R0θ3ψ3 > 1. The solid lines are the curves ϕ1 = ϕ3, and the dash-dotted lines the curves π∗

1 = π∗
3 .

The arrows represent evolutionary trajectories, where the exploiter is evolving to reduce the suc-
cess probability 1 − g1 of the defence strategy 1, i.e. to increase g1. All arrows begin in the region
where both ϕ1 > ϕ3 and π∗

1 > π∗
3 , so that strategy 3 is unconditionally blocked. In (a), the arrows

both cross ϕ1 = ϕ3 into the region where strategy-blocking is conditional on the ecological param-
eters; the right arrow remains there permanently, while the left arrow enters the region where
strategy 3 is unblocked. In (b), the right arrow represents similar behaviour to the right arrow in
(a), while the left arrow moves directly from the unconditionally blocked region to the unblocked
region on crossing the solid line: here, crossing the dash-dotted line has no effect on the behaviour.
In both panels, the left arrow represents a value g2 < ĝ2, and the right arrow a value g2 > ĝ2.

8.4. Other exploiter–victim systems

We have restricted our attention to brood-parasites and their hosts, but the same
general conclusions should emerge from other exploiter–victim systems. In par-
ticular, the results carry over immediately to host–parasitoid systems, which can
be modelled as a particular case of our system. Simlar results may be obtained
in predator–prey systems modelled using differential equations (Section A.3). We
have restricted attention to systems that have stable steady-state solutions. We
expect similar principles to emerge in oscillatory systems, but the analysis then
presents more of a challenge.

8.5. Strategy-blocking over three trophic levels

The ideas in this paper give new insight into the interaction between defence
strategies and the working of the rare-enemy effect. They may also explain para-
doxes in other parasitic systems. For example, when there is more than one level
of parasitism, we can now understand why some species fail to recognise their own
friends. Ant colonies of the species Myrmica are sometimes parasitised by Moun-
tain Alcon Blue butterfly larvae Maculinea rebeli (Akino et al., 1999). Ants gen-
erally defend themselves against parasitism by recognising and rejecting foreign
organisms in their nests, but the butterfly counters this defence by mimicking the
ant recognition pheromones, so closely that the caterpillar is carried by the ants
into their nest. The nest may then be invaded and the caterpillar parasitised by
Ichneumon eumerus wasps. A chemical cocktail that provokes in-fighting among
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the ant workers (Thomas et al., 2002) allows the wasp to gain access to and lay its
egg in the caterpillar. Although the wasps help relieve the ants from their para-
sites, the ants clearly do not recognise them as their allies: they do not pursue any
active strategy to attract them, or even the passive strategy of allowing them free
access to their nest. Such strategies could involve costly recognition errors, and we
suggest that the beneficial wasp is simply too rare to be recognised as a friend. The
wasp is rare because the butterfly is rare: the extreme specialisation within this
system drives a rare-friend effect.

Plant defensive strategies against insect herbivores often involve those herbi-
vores’ natural enemies (Price et al., 1980; Sabelis et al., 2002). We have discussed
an example in the mutualistic relationship between swollen-thorn acacias and aca-
cia ants (Janzen, 1966). Acacias employ either this defence strategy or chemical
defences against herbivores, not both, so it seems that in this case either strat-
egy may block the other. As an example where strategy-blocking does not occur,
caterpillar-damaged plants may protect themselves by emitting chemicals that at-
tract parasitic wasps (Turlings et al., 1995). The primary role of the chemicals is
probably as toxic deterrents against the herbivore, but it does seem that they have
evolved as signals and not merely cues. In this case, the cost to the plant of pro-
ducing chemicals that are effective signals as well as effective toxins is clearly out-
weighed by the benefits. We have not found data on caterpillar infestation rates
in such situations, but we would predict that either the production cost is low, or
infestation rates are so high that the plant’s friend is not rare.

9. Conclusions

We expect to see strategy-blocking very generally in exploiter–victim systems,
on two or more trophic levels, although it may disappear as the exploiter evolves
counter-measures to the victim’s defence. It occurs when victims employing one
defence strategy (strategy 1) are fitter than those employing another, either as a
replacement for (strategy 2) or in addition to (strategy 3) the first. It is paradoxical
because strategy 2 alone would be advantageous against naive hosts (strategy
0), at least when parasitism pressure is high, so it seems that the combined
strategy 3 must be fitter than strategy 1 alone. Strategy 1 renders the addition of
strategy 2 disadvantageous, as a consequence of the rare-enemy effect (Dawkins,
1982) extended to the potential enemies that would survive strategy 1 alone.
Strategy-blocking may be conditional on the ecological parameters, in which
case we would expect to see the combined strategy employed if both the host
carrying capacity and the basic reproductive ratio were sufficiently high, or it may
be unconditional, whatever the ecological parameters. It is therefore essential to
consider the ecology of the system in any discussion of the evolutionary basis of
defence portfolios, and failure to do so may impair understanding. Generally, we
would expect less strategy-blocking, and hence richer defence portfolios, in richer
environments; this tendency is illustrated in Fig. 6(a) and an example in the field
is the increase in plant toxins with butterfly density (Levin, 1976). We suggest that
strategy-blocking conditional on the ecological parameters is the reason that we
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do not observe chick-rejection in many brood-parasite systems, and why, when we
do, we do not observe egg-rejection.

Appendix

A.1 Conditions on the self-limitation function �

The analysis can be carried through for a general model of contest competi-
tion, i.e. for a function � of H and a parameter k ∈ (0,∞) satisfying �(0; k) = 1,
�(H; k) → 0 as H → ∞,

� ′(H; k) < 0,
∂

∂ H
(H�(H; k)) = H� ′(H; k) + �(H; k) > 0, (A.1)

where a prime denotes differentiation with respect to H. The parameter k is re-
lated to the host carrying capacity, and we shall assume �(H; k) → 0 as k → 0,
�(H; k) → 1 as k → ∞, and

∂�

∂k
(H; k) > 0. (A.2)

A.2 Monotonicity of P∗
i and H∗

i

From Eqs. (11) and (12),

(µ + cg f ′(P)H)
∂ P
∂k

− cg(1 − f (P))
∂ H
∂k

= 0, (A.3)

w′(P)
∂ P
∂k

+ � ′(H)
(�(H))2

∂ H
∂k

= − 1
(�(H))2

∂�

∂k
. (A.4)

Hence ∂ P
∂k = �1/�0, ∂ H

∂k = �2/�0, where

�0 =
∣∣∣∣∣
µ + cg f ′(P)H −cg(1 − f (P))

w′(P) � ′(H)/(�(H))2

∣∣∣∣∣ ,

and so on. On curve (11), and in particular at (P∗
i , H∗

i ),

�0 = µ

1 − f (P)
(1 − f (P) + P f ′(P))

� ′(H)
(�(H))2

+ cg(1 − f (P))w′(P) < 0,

using (8). It is easy to show that �2 < 0 on curve (11), and that �1 < 0 everywhere

in the positive quadrant, so that P∗
i and H∗

i are increasing functions of k.
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A.3 Models in continuous time

In continuous time, an analogous model for a parasite and two hosts is given by

dP
dt

= cgi (1 − f (P))Hi + cg j (1 − f (P))Hj − µP, (A.5)

dHi

dt
= Hi

(
wi (P) − H

k

)
,

dHj

dt
= Hj

(
w j (P) − H

k

)
,

where the net per capita growth rate wi of Hi in the absence of competition is given
by

wi (P) = rθi f (P) − r(θi − φi )(1 − f (P)) − ν. (A.6)

The parameters have analogous meanings to those in the discrete-time model. The
host competition term is logistic, with H = Hi + Hj , and k is a scaled host carrying
capacity in the absence of parasitism. In the absence of competition and parasitism
the per capita birth rate of Hi is given by rθi , which is reduced to rφi in parasitised
hosts.

In the absence of parasitism, d/dt(Hi/Hj ) = r(θi − θ j )(Hi/Hj ), and each Hi is
bounded, so that all host types tend to extinction except the one with the largest
value of θi , (as in the discrete-time case the one following the naive strategy), which
satisfies Hi (t) → H0

i = k(rθi − ν). The bifurcation analysis as the parameter k in-
creases now proceeds exactly as in the discrete-time case. As k → ∞, the last re-
maining host type is the one with the highest value of (rθi − ν)/(r(θi − φi )).
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