4,664 research outputs found

    The IBMAP approach for Markov networks structure learning

    Get PDF
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum

    Quantum walks of correlated particles

    Get PDF
    Quantum walks of correlated particles offer the possibility to study large-scale quantum interference, simulate biological, chemical and physical systems, and a route to universal quantum computation. Here we demonstrate quantum walks of two identical photons in an array of 21 continuously evanescently-coupled waveguides in a SiOxNy chip. We observe quantum correlations, violating a classical limit by 76 standard deviations, and find that they depend critically on the input state of the quantum walk. These results open the way to a powerful approach to quantum walks using correlated particles to encode information in an exponentially larger state space

    Minimal surfaces and particles in 3-manifolds

    Full text link
    We use minimal (or CMC) surfaces to describe 3-dimensional hyperbolic, anti-de Sitter, de Sitter or Minkowski manifolds. We consider whether these manifolds admit ``nice'' foliations and explicit metrics, and whether the space of these metrics has a simple description in terms of Teichm\"uller theory. In the hyperbolic settings both questions have positive answers for a certain subset of the quasi-Fuchsian manifolds: those containing a closed surface with principal curvatures at most 1. We show that this subset is parameterized by an open domain of the cotangent bundle of Teichm\"uller space. These results are extended to ``quasi-Fuchsian'' manifolds with conical singularities along infinite lines, known in the physics literature as ``massive, spin-less particles''. Things work better for globally hyperbolic anti-de Sitter manifolds: the parameterization by the cotangent of Teichm\"uller space works for all manifolds. There is another description of this moduli space as the product two copies of Teichm\"uller space due to Mess. Using the maximal surface description, we propose a new parameterization by two copies of Teichm\"uller space, alternative to that of Mess, and extend all the results to manifolds with conical singularities along time-like lines. Similar results are obtained for de Sitter or Minkowski manifolds. Finally, for all four settings, we show that the symplectic form on the moduli space of 3-manifolds that comes from parameterization by the cotangent bundle of Teichm\"uller space is the same as the 3-dimensional gravity one.Comment: 53 pages, no figure. v2: typos corrected and refs adde

    A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter

    Full text link
    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multi-anode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and started collecting colliding beam data by the end of the same year. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version published in IEEE-Trans.Nucl.Sci.

    Collisions of particles in locally AdS spacetimes I. Local description and global examples

    Get PDF
    We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities along a graph Γ\Gamma. We impose physically relevant conditions on the cone singularities, e.g. positivity of mass (angle less than 2π2\pi on time-like singular segments). We construct examples of such manifolds, describe the cone singularities that can arise and the way they can interact (the local geometry near the vertices of Γ\Gamma). We then adapt to this setting some notions like global hyperbolicity which are natural for Lorentz manifolds, and construct some examples of globally hyperbolic AdS manifolds with interacting particles.Comment: This is a rewritten version of the first part of arxiv:0905.1823. That preprint was too long and contained two types of results, so we sliced it in two. This is the first part. Some sections have been completely rewritten so as to be more readable, at the cost of slightly less general statements. Others parts have been notably improved to increase readabilit

    Multiple Scale Reorganization of Electrostatic Complexes of PolyStyrene Sulfonate and Lysozyme

    Get PDF
    We report on a SANS investigation into the potential for these structural reorganization of complexes composed of lysozyme and small PSS chains of opposite charge if the physicochemical conditions of the solutions are changed after their formation. Mixtures of solutions of lysozyme and PSS with high matter content and with an introduced charge ratio [-]/[+]intro close to the electrostatic stoichiometry, lead to suspensions that are macroscopically stable. They are composed at local scale of dense globular primary complexes of radius ~ 100 {\AA}; at a higher scale they are organized fractally with a dimension 2.1. We first show that the dilution of the solution of complexes, all other physicochemical parameters remaining constant, induces a macroscopic destabilization of the solutions but does not modify the structure of the complexes at submicronic scales. This suggests that the colloidal stability of the complexes can be explained by the interlocking of the fractal aggregates in a network at high concentration: dilution does not break the local aggregate structure but it does destroy the network. We show, secondly, that the addition of salt does not change the almost frozen inner structure of the cores of the primary complexes, although it does encourage growth of the complexes; these coalesce into larger complexes as salt has partially screened the electrostatic repulsions between two primary complexes. These larger primary complexes remain aggregated with a fractal dimension of 2.1. Thirdly, we show that the addition of PSS chains up to [-]/[+]intro ~ 20, after the formation of the primary complex with a [-]/[+]intro close to 1, only slightly changes the inner structure of the primary complexes. Moreover, in contrast to the synthesis achieved in the one-step mixing procedure where the proteins are unfolded for a range of [-]/[+]intro, the native conformation of the proteins is preserved inside the frozen core

    kt Effects in Direct-Photon Production

    Full text link
    We discuss the phenomenology of initial-state parton-kt broadening in direct-photon production and related processes in hadron collisions. After a brief summary of the theoretical basis for a Gaussian-smearing approach, we present a systematic study of recent results on fixed-target and collider direct-photon production, using complementary data on diphoton and pion production to provide empirical guidance on the required amount of kt broadening. This approach provides a consistent description of the observed pattern of deviation of next-to-leading order QCD calculations relative to the direct-photon data, and accounts for the shape and normalization difference between fixed-order perturbative calculations and the data. We also discuss the uncertainties in this phenomenological approach, the implications of these results on the extraction of the gluon distribution of the nucleon, and the comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure
    corecore