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Abstract: We investigate 3-dimensional globally hyperbolic AdS manifolds (or more1

generally constant curvature Lorentz manifolds) containing “particles”, i.e., cone singu-2

larities along a graph �. We impose physically relevant conditions on the cone singu-3

larities, e.g. positivity of mass (angle less than 2π on time-like singular segments). We4

construct examples of such manifolds, describe the cone singularities that can arise and5

the way they can interact (the local geometry near the vertices of �). We then adapt to this6

setting some notions like global hyperbolicity which are natural for Lorentz manifolds,7

and construct some examples of globally hyperbolic AdS manifolds with interacting8

particles.9
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1. Introduction54

1.1. Three-dimensional cone-manifolds. The 3-dimensional hyperbolic space can be55

defined as a quadric in the 4-dimensional Minkowski space:56

H
3 = {x ∈ R

3,1 | 〈x, x〉 = −1 & x0 > 0} .57

Hyperbolic manifolds, which are manifolds with a Riemannian metric locally isometric58

to the metric on H
3, have been a major focus of attention for modern geometry.59

More recently attention has turned to hyperbolic cone-manifolds, which are the types60

of singular hyperbolic manifolds that one can obtain by gluing isometrically the faces of61

hyperbolic polyhedra. Three-dimensional hyperbolic cone-manifolds are singular along62

lines, and at “vertices” where three or more singular segments intersect. The local geom-63

etry at a singular vertex is determined by its link, which is a spherical surface with cone64

singularities. Among key recent results on hyperbolic cone-manifolds are rigidity results65

[HK98,MM,Wei] as well as many applications to three-dimensional geometry (see e.g.66

[Bro04,BBES03]).67
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1.2. AdS manifolds. The three-dimensional anti-de Sitter (AdS) space can be defined,68

similarly as H3, as a quadric in the 4-dimensional flat space of signature (2, 2):69

AdS3 = {x ∈ R
2,2 | 〈x, x〉 = −1} .70

It is a complete Lorentz space of constant curvature −1, with fundamental group Z.71

AdS geometry provides in certain ways a Lorentz analog of hyperbolic geometry, a72

fact mostly discovered by Mess (see [Mes07,ABB+07]). In particular, the so-called glob-73

ally hyperbolic AdS 3-manifolds are in key ways analogs of quasifuchsian hyperbolic74

3-manifolds. Among the striking similarities one can note an analog of the Bers double75

uniformization theorem for globally hyperbolic AdS manifolds, or a similar description76

of the convex core and of its boundary. Three-dimensional AdS geometry, like 3-dimen-77

sional hyperbolic geometry, has some deep relationships with Teichmüller theory (see78

e.g. [Mes07,ABB+07,BS09a,BKS06,KS07,BS09b,BS10]).79

Lorentz manifolds have often been studied for reasons related to physics and in partic-80

ular gravitation. In three dimensions, Einstein metrics are the same as constant curvature81

metrics, so the constant curvature 3-dimensional Lorentz manifolds – and in particular82

AdS manifolds – are the 3-dimensional models of gravity. From this point of view, cone83

singularities have been extensively used to model point particles, see e.g. [tH96,tH93].84

The goal pursued here is to start a geometric study of 3-dimensional AdS manifolds85

with cone singularities. We will in particular86

• describe the possible “particles”, or cone singularities along a singular line,87

• describe the singular vertices – the way those “particles” can “interact”,88

• show that classical notions like global hyperbolicity can be extended to AdS cone-89

manifolds,90

• give examples of globally hyperbolic AdS particles with “interesting” particles and91

particle interactions.92

We focus here on the presentation of AdS manifolds for simplicity, but most of the93

local study near singular points extends to constant curvature-Lorentz 3-dimensional94

manifolds. More specifically, the first three points above extend from AdS manifolds95

with particles to Minkowski or de Sitter manifolds. The fourth point is mostly limited to96

the AdS case, although some parts of what we do here can be extended to the Minkowski97

or de Sitter case.98

We outline in more details those main contributions below.99

1.3. A classification of cone singularities along lines. We start in Sect. 3 an analysis of100

the possible local geometry near a singular point. For the hyperbolic cone-manifold this101

local geometry is described by the link of the point, which is a spherical surface with102

cone singularities. In the AdS (as well as the Minkowski or de Sitter) setting there is an103

analog notion of link, which is now what we call a singular HS-surface, that is, a surface104

with a geometric structure locally modelled on the space of rays starting from a point in105

R
2,1 (see Sect. 3.4).106

We then describe the possible geometry in the neighborhood of a point on a singular107

segment (Proposition 3.1). For hyperbolic cone-manifolds, this local description is quite108

simple: there is only one possible local model, depending on only one parameter, the109

angle. For AdS cone-manifolds – or more generally cone manifolds with a constant cur-110

vature Lorentz metric – the situation is more complicated, and cone singularities along111

segments can be of different types. For instance it is clear that the fact that the singular112

segment is space-like, time-like or light-like should play a role.113
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There are two physically natural restrictions which appear in this section. The first is114

the degree of a cone singularity along a segment c: the number of connected components115

of time-like vectors in the normal bundle of c (Sect. 3.3). In the “usual” situation where116

each point has a past and a future, this degree is equal to 2. We restrict our study to the117

case where the degree is at most equal to 2. There are many interesting situations where118

this degree can be strictly less than 2, see below.119

The second condition (see Sect. 3.6) is that each point should have a neighborhood120

containing no closed causal curve – also physically relevant since closed causal curves121

induce causality violations. AdS manifolds with cone singularities satisfying those two122

conditions are called causal here. We classify and describe all cone singularities along123

segments in causal AdS manifolds with cone singularities, and provide a short descrip-124

tion of each kind. They are called here: massive particles, tachyons, Misner singularities,125

BTZ-like singularities, and light-like and extreme BTZ-like singularities.126

We also define a notion of positivity for those cone singularities along lines.127

Heuristically, positivity means that those geodesics tend to “converge” along those cone128

singularitites; for instance, for a “massive particle” – a cone singularity along a time-like129

singularity – positivity means that the angle should be less than 2π , and it corresponds130

physically to the positivity of mass.131

Remark 1.1. All this analysis is local, even infinitesimal. It applies in a much wider set-132

ting than the one we restricted ourselves to here, and leads to a general description of all133

possible singularities in a 3-dimensional Lorentzian spacetime. Our first concern here134

is the case of singular AdS-spacetimes, hence we will not develop here further the other135

cases.136

1.4. Interactions and convex polyhedra. In Sect. 4 we turn our attention to the verti-137

ces of the singular locus of AdS manifolds with cone singularities, in other terms the138

“interaction points” where several “particles” – cone singularities along lines – meet and139

“interact”. The construction of the link as an HS-surface, in Sect. 3, means that we need140

to understand the geometry of singular HS-surfaces. The singular lines arriving at an141

interaction point p correspond to the singular points of the link of p. An important point142

is that the positivity of the singular lines arriving at p, and the absence of closed causal143

curves near p, can be read directly on the link; this leads to a natural notion of causal144

singular HS-surface, those causal singular HS-surfaces are precisely those occurring as145

links of interaction points in causal singular AdS manifolds.146

The first point of Sect. 4 is the construction of many examples of positive causal147

singular HS-surfaces from convex polyhedra in HS3, the natural analog of HS2 in one148

dimension higher. Given a convex polyhedron in HS3 one can consider the induced149

geometric structure on its boundary, and it is often an HS-structure and without closed150

causal curve. Moreover the positivity condition is always satisfied. This makes it easy to151

visualize many examples of causal HS-structures, and should therefore help in following152

the arguments used in Sect. 5 to classify causal HS-surfaces.153

However the relation between causal HS-surfaces and convex polyhedra is perhaps154

deeper than just a convenient way to construct examples. This is indicated in Theorem155

4.3, which shows that all HS-surfaces having some topological properties (those which156

are “causally regular”) are actually obtained as induced on a unique convex polyhedron157

in HS3.158

1.5. A classification of HS-structures. Section 5 contains a classification of causal159

HS-structures, or, in other terms, of interaction points in causal singular AdS manifolds160
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(or, more generally, in any singular spacetime). The main result is Theorem 5.6, which161

describes what types of interactions can, or cannot, occur. The striking point is that there162

are geometric restrictions on what kind of singularities along segments can interact at163

one point.164

1.6. Global hyperbolicity. In Sect. 6 we consider singular AdS manifolds globally. We165

first extend to this setting the notion of global hyperbolicity which plays an important166

role in Lorentz geometry.167

A key result for non-singular AdS manifolds is the existence, for any globally hyper-168

bolic manifold M , of a unique maximal globally hyperbolic extension. We prove a similar169

result in the singular context (see Proposition 6.22 and Proposition 6.24). However this170

maximal extension is unique only under the condition that the extension does not contain171

more interactions than M .172

Once more, this analysis could have been performed in a wider context. It applies in173

particular in the case of singular spacetimes locally modeled on the Minkowski space-174

time, or the de Sitter spacetime.175

1.7. Construction of global examples. Finally Sect. 7 is intended to convince the reader176

that the general considerations on globally hyperbolic AdS manifolds with interacting177

particles are not empty: it contains several examples, constructed using basically two178

methods.179

The first relies again on 3-dimensional polyhedra, but not used in the same way as in180

Sect. 4: here we glue their faces isometrically so as to obtain cone singularities along the181

edges, and interactions points at the vertices. The second method is based on surgery:182

we show that, in many situations, it is possible to excise a tube in an AdS manifold183

with non-interacting particles (like those arising in [BS09a]) and replace it by a more184

interesting tube containing an interaction point.185

1.8. Further extension. We wish to continue in [BBS10] the investigation of globally186

hyperbolic AdS metrics with interacting particles, and to prove that the moduli space187

of those metrics is locally parameterized by 2-dimensional data (a sequence of pairs of188

hyperbolic metrics with cone singularities on a surface).189

2. Preliminaries190

2.1. (G, X)-structures. Let G be a Lie group, and X an analytic space on which G191

acts analytically and faithfully. In this paper, we are essentially concerned with the192

case where X = AdS3 and G its isometry group, but we will also consider other pairs193

(G, X).194

A (G, X)-structure on a manifold M is a covering of M by open sets with homeomor-195

phisms into X , such that the transition maps on the overlap of any two sets are (locally) in196

G. A (G, X)-manifold is a manifold equipped with a (G, X)-structure. Observe that if X̃197

denotes the universal covering of X , and G̃ the universal covering of G, any (G, X)-struc-198

ture defines a unique (G̃, X̃)-structure, and, conversely, any (G̃, X̃)-structure defines a199

unique (G, X)-structure. An isomorphism between two (G, X)-manifolds is a homeo-200

morphism whose local expressions in charts of the (G, X)-structures are restrictions of201

elements of G.202
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A (G, X)-manifold is characterized by its developing map D : ˜M → X (where ˜M203

denotes the universal covering of M) and the holonomy representation ρ : π1(M) → G.204

Moreover, the developing map is a local homeomorphism, and it is π1(M)-equivariant205

(where the action of π1(M) on ˜M is the action by deck transformations).206

For more details, we refer to the recent expository paper [Gol10], or to the book207

[Car03] oriented towards a physics audience.208

2.2. Background on the AdS space. Let R
2,2 denote the vector space R

4 equipped with209

a quadratic form q2,2 of signature (2, 2). The Anti-de Sitter AdS3 space is defined as the210

−1 level set of q2,2 in R
2,2, endowed with the Lorentz metric induced by q2,2.211

On the Lie algebra gl(2, R) of 2 × 2 matrices with real coefficients, the determinant212

defines a quadratic form of signature (2, 2). Hence we can consider the anti-de Sitter213

space AdS3 as the group SL(2, R) equipped with its Killing metric, which is bi-invariant.214

There is therefore an isometric action of SL(2, R) × SL(2, R) on AdS3, where the two215

factors act by left and right multiplication, respectively. It is well known (see [Mes07])216

that this yields an isomorphism between the identity component Isom0(AdS3) of the217

isometry group of AdS3 and SL(2, R) × SL(2, R)/ ± (I, I ). It follows directly that218

the identity component of the isometry group of AdS3,+ (the quotient of AdS3 by the219

antipodal map) is PSL(2, R)× PSL(2, R). In all of this paper, we denote by Isom0,+ the220

identity component of the isometry group of AdS3,+, so that Isom0,+ is isomorphic to221

PSL(2, R) × PSL(2, R).222

Another way to identify the identity component of the isometry group of AdS3 is by223

considering the projective model of AdS3,+, as the interior (one connected component of224

the complement) of a quadric Q ⊂ RP3. This quadric is ruled by two families of lines,225

which we call the “left” and “right” families and denote by Ll ,Lr . Those two families of226

lines have a natural projective structure (given for instance by the intersection of the lines227

of Ll with a fixed line of Lr ). Given an isometry u ∈ Isom0,+, it acts projectively on both228

Ll and Lr , defining two elements ρl , ρr of PSL(2, R). This provides an identification229

of Isom0,+ with PSL(2, R) × PSL(2, R).230

The projective space RP3 referred to above is of course the projectivization of R
2,2,231

and the elements of the quadric Q are the projections of q2,2-isotropic vectors. The geo-232

desics of AdS3,+ are the intersections between projective lines of RP3 and the interior233

of Q. Such a projective line is the projection of a 2-plane P in R
2,2. If the signature of234

the restriction of q2,2 to P is (1, 1), then the geodesic is said to be space-like, if it is235

(0, 2) the geodesic is time-like, and if the restriction of q2,2 to P is degenerate then the236

geodesic is light-like.237

Similarly, totally geodesic planes are projections of 3-planes in R
2,2. They can be238

space-like, light-like or time-like. Observe that space-like planes in AdS3,+, with the239

induced metric, are isometric to the hyperbolic disk. Actually, their images in the pro-240

jective model of AdS3,+ are Klein models of the hyperbolic disk. Time-like planes in241

AdS3,+ are isometric to the anti-de Sitter space of dimension two.242

Consider an affine chart of RP3, complement of the projection of a space-like hyper-243

plane of R
2,2. The quadric in such an affine chart is a one-sheeted hyperboloid. The244

interior of this hyperboloid is an affine chart of AdS3. The intersection of a geodesic of245

AdS3,+ with an affine chart is a component of the intersection of the affine chart with an246

affine line �. The geodesic is space-like if � intersects1 twice the hyperboloid, light-like247

if � is tangent to the hyperboloid, and time-like if � avoids the hyperboloid.248

1 Of course, such an intersection may happen at the projective plane at infinity.
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For any p in AdS3,+, the q2,2-orthogonal p⊥ is a space-like hyperplane. Its comple-249

ment is therefore an affine chart, that we denote by A(p). It is the affine chart centered at250

p. Observe that A(p) contains p, any non-time-like geodesic containing p is contained251

in A(p).252

Unfortunately, affine charts always miss some region of AdS3,+, and we will consider253

regions of AdS3,+ which do not fit entirely in such an affine chart. In this situation, one254

can consider the conformal model: there is a conformal map from AdS3 to D
2 × S

1,255

equipped with the metric ds2
0 − dt2, where ds2

0 is the spherical metric on the disk D
2,256

i.e. where (D2, ds2
0 ) is a hemisphere (see [HE73, pp. 131–133]).257

One needs also to consider the universal covering ÃdS3. It is conformally isometric258

to D
2 × R equipped with the metric ds2

0 − dt2. But it is also advisable to consider it as259

the union of an infinite sequence (An)(n∈Z) of closures of affine charts. This sequence260

is totally ordered, the interior An of every term lying in the future of the previous261

one and in the past of the next one. The interiors An are separated one from the other262

by a space-like plane, i.e. a totally geodesic plane isometric to the hyperbolic disk.263

Observe that each space-like or light-like geodesic of ÃdS3 is contained in such an264

affine chart; whereas each time-like geodesic intersects every copy An of the affine265

chart.266

If two time-like geodesics meet at some point p, then they meet infinitely many times.267

More precisely, there is a point q in ÃdS3 such that if a time-like geodesic contains p,268

then it contains q also. Such a point is said to be conjugate to p. The existence of269

conjugate points corresponds to the fact that for any p in AdS3 ⊂ R
2,2, every 2-plane270

containing p contains also −p. If we consider ÃdS3 as the union of infinitely many cop-271

ies An (n ∈ Z) of the closure of the affine chart A(p) centered at p, with A0 = A(p),272

then the points conjugate to p are precisely the centers of the An , all representing the273

same element in the interior of the hyperboloid.274

The center of A1 is the first conjugate point p+ of p in the future. It has the property275

that any other point in the future of p and conjugate to p lies in the future of p+. Inverting276

the time, one defines similarly the first conjugate point p− of p in the past as the center277

of A−1.278

Finally, the future in A0 of p is the interior of a convex cone based at p (more279

precisely, the interior of the convex hull in RP3 of the union of p with the space-like280

2-plane between A0 and A1). The future of p in ÃdS3 is the union of this cone with all281

the An with n > 0.282

In particular, one can give the following description of the domain E(p), intersection283

between the future of p− and the past of p+: it is the union of A0, the past of p+ in A1284

and the future of p− in A−1.285

We will need a similar description of 2-planes in ÃdS3 (i.e. of totally geodesic286

hypersurfaces) containing a given space-like geodesic. Let c be such a space-like287

geodesic, consider an affine chart A0 centered at a point in c (therefore, c is the segment288

joining two points in the hyperboloid). The set composed of the first conjugate points289

in the future of points in c is a space-like geodesic c+, contained in the chart A1. Every290

time-like 2-plane containing c contains also c+, and vice versa. The intersection between291

the future of c and the past of c+ is the union of:292

• a wedge between two light-like half-planes both containing c in their boundary,293

• a wedge between two light-like half-planes both containing c+ in their boundary,294

• the space-like 2-plane between A0 and A1.295

2 2 0 1 3 1 8
Jour. No Ms. No.

B Dispatch: 3/9/2011
Total pages: 54
Disk Received ✓
Disk Used ✓

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

 P
ro

of

T. Barbot, F. Bonsante, J.-M. Schlenker

3. Singularities in Singular AdS-Spacetimes296

In this paper, we require spacetimes to be oriented and time oriented. Therefore, by297

(regular) AdS-spacetime we mean an (Isom0(AdS3), AdS3)-manifold. In this section,298

we classify singular lines and singular points in singular AdS-spacetimes. Actually, our299

first concern is the AdS background, but all this analysis can be easily extended to a more300

general situation, leading in a straightforward way to the notion of singular dS-space-301

times; or singular flat spacetimes (with regular part locally modelled on the Minkowski302

space).303

In order to understand the notion of singularities, let us consider first the similar304

situation in the classical case of Riemannian geometric structures, for example, of (sin-305

gular) Euclidean manifolds (see p. 523-524 of [Thu98]). Locally, a singular point p in a306

singular Euclidean space is the intersection of various singular rays, the complement of307

these rays being locally isometric to R
3. The singular rays look as if they were geodesic308

rays. Since the singular space is assumed to have a manifold topology, the space of rays,309

singular or not, starting from p is a topological 2-sphere L(p): the link of p. Outside310

the singular rays, L(p) is locally modeled on the space of rays starting from a point in311

the regular model, i.e. the 2-sphere S
2 equipped with its usual round metric. But this312

metric degenerates on the singular points of L(p), i.e. the singular rays. The way it may313

degenerate is described similarly: let r be a singular point in L(p) (a singular ray), and314

let �(p) be the space of rays in L(p) starting from r . It is a topological circle, locally315

modeled on the space �0 of geodesic rays at a point in the metric sphere S
2. The space316

�0 is naturally identified with the 1-sphere S
1 of perimeter 2π , and locally S

1-structures317

on topological circles �(p) are easily classified: they are determined by a positive real318

number, the cone angle, and �(p) is isomorphic to �0 if and only if this cone angle is319

2π . Therefore, the link L(p) is naturally equipped with a spherical metric with cone-320

angle singularities, and one easily recovers the geometry around p by a fairly intuitive321

construction, the suspension of L(p). We refer to [Thu98] for further details.322

Our approach in the AdS case is similar. The neighborhood of a singular point p is323

the suspension of its link L(p), this link being a topological 2-sphere equipped with324

a structure whose regular part is locally modeled on the link HS2 of a regular point325

in AdS3, and whose singularities are suspensions of their links �(r), which are circles326

locally modeled on the link of a point in HS2.327

However, the situation in the AdS case is much more intricate than in the Euclidean328

case, since there is a bigger variety of singularity types in L(p): a singularity in L(p),329

i.e. a singular ray through p can be time-like, space-like or light-like. Moreover, non-330

time-like lines may differ through the causal behavior near them (for the definition of331

the future and past of a singular line, see Sect. 3.6).332

Proposition 3.1. The various types of singular lines in AdS spacetimes are:333

• Time-like lines: they correspond to massive particles (see Sect. 3.7.1).334

• Light-like lines of degree 2: they correspond to photons (see Remark 3.24).335

• Space-like lines of degree 2: they correspond to tachyons (see Sect. 3.7.2).336

• Future BTZ-like singular lines: These singularities are characterized by the property337

that it is space-like, but has no future.338

• Past BTZ-like singular lines: These singularities are characterized by the property339

that it is space-like, but has no past.340

• (Past or future) extreme BTZ-like singular lines: they look like past/future BTZ-like341

singular lines, except that they are light-like.342
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• Misner lines: they are space-like, but have no future and no past. Moreover, any343

neighborhood of the singular lines contains closed time-like curves.344

• Light-like or space-like lines of degree k ≥ 4: they can be described as k/2-branched345

cover over light-like or space-like lines of degree 2 (in particular, the degree k is even).346

They have the “unphysical” property of admitting a non-connected future.347

The several types of singular lines, as a not-so-big surprise, reproduce the several348

types of particles considered in physics. Some of these singularities appear in the physics349

litterature, but, as far as we know, not all of them (for example, the terminology tachyons,350

that we feel is adapted, does not seem to appear anywhere).351

In Sect. 3.1 we briefly present the space HS2 of rays through a point in AdS3. In352

Sect. 3.2, we give the precise definition of regular HS-surfaces and their suspensions.353

In Sect. 3.3 we classify the circles locally modeled on links of points in HS2, i.e. of sin-354

gularities of singular HS-surfaces which can then be defined in the following Sect. 3.4.355

In this Sect. 3.4, we can state the definition of singular AdS spacetimes.356

In Sect. 3.5, we classify singular lines. In Sect. 3.6 we define and study the cau-357

sality notion in singular AdS spacetimes. In particular we define the notion of causal358

HS-surface, i.e. singular points admitting a neighborhood containing no closed causal359

curve. It is in this section that we establish the description of the causality relation near360

the singular lines as stated in Proposition 3.1.361

Finally, in Sect. 3.7, we provide a geometric description of each singular line; in362

particular, we justify the “massive particle”, “photon” and “tachyon” terminology.363

Remark 3.2. More generally, HS2 is the model of links of points in arbitrary Lorentzian364

manifolds. Analogs of Proposition 3.1 still hold in the context of flat or locally de Sitter365

manifolds.366

3.1. HS geometry. Given a point p in ÃdS3, let L(p) be the link of p, i.e. the set of367

(non-parametrized) oriented geodesic rays based at p. Since these rays are determined368

by their tangent vector at p up to rescaling, L(p) is naturally identified with the set of369

rays in TpÃdS3. Geometrically, TpÃdS3 is a copy of Minkowski space R
1,2. Denote by370

HS2 the set of geodesic rays issued from 0 in R
1,2. It admits a natural decomposition in371

five subsets:372

• the domains H
2
+ and H

2− composed respectively of future oriented and past oriented373

time-like rays,374

• the domain dS2 composed of space-like rays,375

• the two circles ∂H
2
+ and ∂H

2−, boundaries of H
2± in HS2.376

The domains H
2± are the Klein models of the hyperbolic plane, and dS2 is the Klein377

model of de Sitter space of dimension 2. The group SO0(1, 2), i.e. the group of time-378

orientation preserving and orientation preserving isometries of R
1,2, acts naturally (and379

projectively) on HS2, preserving this decomposition.380

The classification of elements of SO0(1, 2) ≈ PSL(2, R) is presumably well-known381

by most of the readers, but we stress here that it is related to the HS2-geometry: let g be382

a non-trivial element of SO0(1, 2).383

• g is elliptic if and only if it admits exactly two fixed points, one in H
2
+, and the other384

(the opposite) in H
2−,385

• g is parabolic if and only if it admits exactly two fixed points, one in ∂H
2
+, and the386

other (the opposite) in ∂H
2−,387
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• g is hyperbolic if and only if it admits exactly 6 fixed points: two pairs of opposite388

points in ∂H
2±, and one pair of opposite points in dS2.389

In particular, g is elliptic (respectively hyperbolic) if and only if it admits a fixed in390

H
2± (respectively in dS2).391

3.2. Suspension of regular HS-surfaces.392

Definition 3.3. A regular HS-surface is a topological surface endowed with a (SO0(1, 2),393

HS2)-structure.394

The SO0(1, 2)-invariant orientation on HS2 induces an orientation on every regular395

HS-surface. Similarly, the dS2 regions admit a canonical time orientation. Hence any396

regular HS-surface is oriented, and its de Sitter regions are time oriented.397

Given a regular HS-surface �, and once a point p is fixed in ÃdS3, we can construct398

a locally AdS manifold e(�), called the suspension of �, defined as follows:399

• for any v in HS2 ≈ L(p), let r(v) be the geodesic ray issued from p tangent to v. If400

v lies in the closure of dS2, it defines e(v) := r(v); if v lies in H
2±, let e(v) be the401

portion of r(v) between p and the first conjugate point p±.402

• for any open subset U in HS2, let e(U ) be the union of all e(v) for v in U .403

Observe that e(U )\{p} is an open domain in ÃdS3, and that e(HS2) is the intersection404

E(p) between the future of the first conjugate point in the past and the past of the first405

conjugate point in the future (cf. the end of Sect. 2.2).406

The regular HS-surface � can be understood as the disjoint union of open domains407

Ui in HS2, glued one to the other by coordinate change maps gi j given by restrictions408

of elements of SO0(1, 2):409

gi j : Ui j ⊂ U j → U ji ⊂ Ui .410

But SO0(1, 2) can be considered as the group of isometries of AdS3 fixing p. Hence411

every gi j induces an identification between e(Ui j ) and e(U ji ). Define e(�) as the dis-412

joint union of the e(Ui ), quotiented by the relation identifying q in e(Ui j ) with gi j (q) in413

e(U ji ). This quotient space contains a special point p̄, represented in every e(Ui ) by p,414

and called the vertex (we will sometimes abusively denote p̄ by p). The fact that � is a415

surface implies that e(�)\ p̄ is a three-dimensional manifold, homeomorphic to � × R.416

The topological space e(�) itself is homeomorphic to the cone over �. Therefore e(�)417

is a (topological) manifold only when � is homeomorphic to the 2-sphere. But it is418

easy to see that every HS-structure on the 2-sphere is isomorphic to HS2 itself; and the419

suspension e(HS2) is simply the regular AdS-manifold E(p).420

Hence in order to obtain singular AdS-manifolds that are not merely regular AdS-421

manifolds, we need to consider (and define!) singular HS-surfaces.422

Remark 3.4. A similar construction holds for locally flat or locally de Sitter spacetimes,423

leading, mutatis mutandis to the notion of flat or de Sitter suspensions of HS-surfaces.424

3.3. Singularities in singular HS-surfaces. The classification of singularities in singular425

HS-surfaces essentially reduces (but not totally) to the classification of RP
1-structures426

on the circle.427
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3.3.1. Real projective structures on the circle. Let RP
1 be the real projective line, and428

let ˜RP
1

be its universal covering. We fix a homeomorphism between ˜RP
1

and the real429

line: this defines an orientation and an order < on ˜RP
1
. Let G be the group PSL(2, R)430

of projective transformations of RP
1, and let G̃ be its universal covering: it is the group431

of projective transformations of R̃P1. We have an exact sequence:432

0 → Z → G̃ → G → 0.433

Let δ be the generator of the center Z such that for every x in ˜RP
1

the inequality434

δx > x holds. The quotient of ˜RP
1

by Z is projectively isomorphic to RP
1.435

The elliptic-parabolic-hyperbolic classification of elements of G induces a similar436

classification for elements in G̃, according to the nature of their projection in G. Observe437

that non-trivial elliptic elements act on ˜RP
1

as translations, i.e. freely and properly dis-438

continuously. Hence the quotient space of their action is naturally a real projective439

structure on the circle. We call these quotient spaces elliptic circles. Observe that it440

includes the usual real projective structure on RP
1.441

Parabolic and hyperbolic elements can all be decomposed as a product g̃ = δk g,442

where g has the same nature (parabolic or hyperbolic) as g̃, but admits fixed points in443

˜RP
1
. The integer k ∈ Z is uniquely defined. Observe that if k 
= 0, the action of g̃ on444

˜RP
1

is free and properly discontinuous. Hence the associated quotient space, which is445

naturally equipped with a real projective structure, is homeomorphic to the circle. We446

call it a parabolic or hyperbolic circle, according to the nature of g, of degree k. Inverting447

g̃ if necessary, we can always assume, up to a real projective isomorphism, that k ≥ 1.448

Finally, let g be a parabolic or hyperbolic element of G̃ fixing a point x0 in ˜RP
1
.449

Let x1 be the unique fixed point of g such that x1 > x0 and such that g admits no fixed450

point between x0 and x1: if g is parabolic, x1 = δx0; and if g is hyperbolic, x1 is the451

unique g-fixed point in ]x0, δx0[. Then the action of g on ]x0, x1[ is free and properly452

discontinuous, the quotient space is a parabolic or hyperbolic circle of degree 0.453

These examples exhaust the list of real projective structures on the circle up to a real454

projective isomorphism. We briefly recall the proof: the developing map d : R → ˜RP
1

455

of a real projective structure on R/Z is a local homeomorphism from the real line into456

the real line, hence a homeomorphism onto its image I . Let ρ : Z → G̃ be the holonomy457

morphism: being a homeomorphism, d induces a real projective isomorphism between458

the initial projective circle and I/ρ(Z). In particular, ρ(1) is non-trivial, preserves I ,459

and acts freely and properly discontinuously on I . An easy case-by-case study leads to460

a proof of our claim.461

It follows that every cyclic subgroup of G̃ is the holonomy group of a real projective462

circle, and that two such real projective circles are projectively isomorphic if and only if463

their holonomy groups are conjugate one to the other. But some subtlety appears if one464

takes into consideration the orientations: usually, by real projective structure we mean465

a (PGL(2, R), RP
1)-structure, i.e. coordinate changes might reverse the orientation. In466

particular, two such structures are isomorphic if there is a real projective transforma-467

tion conjugating the holonomy groups, even if this transformation reverses the orien-468

tation. But here, by RP
1-circle we mean a (G, RP

1)-structure on the circle, with G =469

PSL(2, R). In particular, it admits a canonical orientation, preserved by the holonomy470

group: the one whose lifting to R is such that the developing map is orientation preserving.471

To be a RP
1-isomorphism, a real projective conjugacy needs to preserve this orientation.472
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Let L be a RP
1-circle. Let γ0 be the generator of π1(L) such that, for the canonical473

orientation defined above, and for every x in the image of the developing map:474

ρ(γ0)x > x . (1)475

Let ρ(γ0) = δk g be the decomposition such that g admits fixed points in ˜RP
1
.476

According to the inequality (1), the degree k is non-negative. Moreover:477

The elliptic case. Elliptic RP
1-circles (i.e. with elliptic holonomy) are uniquely478

parametrized by a positive real number (the angle).479

The case k ≥ 1. Non-elliptic RP
1-circles of degree k ≥ 1 are uniquely parametrized480

by the pair (k, [g]), where [g] is a conjugacy class in G. Hyperbolic conjugacy classes481

are uniquely parametrized by a positive real number: the modulus of their trace. There482

are exactly two parabolic conjugacy classes: the positive parabolic class, composed of483

the parabolic elements g such that gx ≥ x for every x in ˜RP
1
, and the negative para-484

bolic class, made of the parabolic elements g such that gx ≤ x for every x in ˜RP
1

(this485

terminology is justified in Sect. 3.7.5, and Remark 3.18).486

The case k = 0. In this case, L is isomorphic to the quotient by g of a segment487

]x0, x1[ admitting as extremities two successive fixed points of g. Since we must have488

gx > x for every x in this segment, g cannot belong to the negative parabolic class:489

Every parabolic RP
1-circle of degree 0 is positive. Concerning the hyperbolic RP

1-cir-490

cles, the conclusion is the same as in the case k ≥ 1: they are uniquely parametrized by491

a positive real number. Indeed, given a hyperbolic element g in G̃, any RP
1-circle of492

degree 0 with holonomy g is a quotient of a segment ]x0, x1[, where the left extremity493

x0 is a repelling fixed point of g, and the right extremity an attractive fixed point.494

3.3.2. HS-singularities. For every p in HS2, let �(p) the link of p, i.e. the space of rays495

in Tp HS2. Such a ray v defines an oriented projective line cv starting from p. Let �p be496

the stabilizer in SO0(1, 2) ≈ PSL(2, R) of p.497

Definition 3.5. A (�p, �(p))-circle is the data of a point p in H S2 and a (�p, �(p))-498

structure on the circle.499

Since HS2 is oriented, �(p) admits a natural RP
1-structure, and thus every (�p, �(p))-500

circle admits a natural underlying RP
1-structure.501

Given a (�p, �(p))-circle L , we construct a singular HS-surface e(L): for every ele-502

ment v in the link of p, define e(v) as the closed segment [−p, p] contained in the503

projective ray defined by v, where −p is the antipodal point of p in HS2, and then504

operate as we did for defining the AdS space e(�) associated to a regular HS-surface.505

The resulting space e(L) is topologically a sphere, locally modeled on HS2 in the com-506

plement of two singular points corresponding to p and −p. These singular points will507

be typical singularities in singular HS-surfaces. Here, the singularity corresponding to508

p as a preferred status, as representation a (�p, �(p))-singularity.509

There are several types of singularity, mutually non isomorphic:510

• time-like singularities: they correspond to the case where p lies in H
2±. Then, �p is511

a 1-parameter elliptic subgroup of G, and L is an elliptic RP
1-circle. When p lies512

in H
2
+ (respectively H

2−), then the singularity is a future (respectively past) time-like513

singularity.514

• space-like singularities: when p lies in dS2, �p is a one-parameter subgroup con-515

sisting of hyperbolic elements of SO0(1, 2), and L is a hyperbolic RP
1-circle.516
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• light-like singularities: it is the case where p lies in ∂H
2±. The stabilizer �p is a517

one-parameter subgroup consisting of parabolic elements of SO0(1, 2), and the link518

L is a parabolic RP
1-circle. We still have to distinguish between past and future519

light-like singularities.520

It is easy to classify time-like singularities up to (local) HS-isomorphisms: they are521

locally characterized by their underlying structure of the elliptic RP
1-circle. In other522

words, time-like singularities are nothing but the usual cone singularities of hyperbolic523

surfaces, since they admit neighborhoods locally modeled on the Klein model of the524

hyperbolic disk.525

But there are several types of space-like singularities, according to the causal struc-526

ture around them. More precisely: recall that every element v of �(p) is a ray in Tp HS2,527

tangent to a parametrized curve cv starting at p and contained in a projective line of528

HS2 = P(R1,2). Taking into account that dS2 is the Klein model of the 2-dimensional529

de Sitter space, it follows that v, as a direction in a Lorentzian spacetime, can be a time-530

like, light-like or space-like direction. Moreover, in the two first cases, it can be future531

oriented or past oriented.532

Definition 3.6. If p lies in dS2, we denote by i+(�(p)) (respectively i−(�(p))) the set of533

future oriented (resp. past oriented) directions.534

Observe that i+(�(p)) and i−(�(p)) are connected, and that their complement in �(p)535

has two connected components.536

This notion can be extended to light-like singularities:537

Definition 3.7. If p lies in ∂H
2
+, the domain i+(�(p)) (respectively i−(�(p))) is the set538

of directions v such that cv(s) lies in H
2
+ (respectively dS2) for s sufficiently small.539

Similarly, if p lies in ∂H
2−, the domain i−(�(p)) (respectively i+(�(p))) is the set of540

directions v such that cv(s) lies in H
2− (respectively dS2) for s sufficiently small.541

In this situation, i+(�(p)) and i−(�(p)) are the connected components of the com-542

plement of the two points in �(p) which are directions tangent to ∂H
2±.543

For time-like singularities, we simply define i+(�(p)) = i−(�(p)) = ∅.544

Finally, observe that the extremities of the arcs i±(�(p)) are precisely the fixed points545

of �p.546

Definition 3.8. Let L be a (�p, �(p))-circle. Let d : L̃ → �(p) the developing map.547

The preimages d−1(i+(�(p))) and d−1(i−(�(p))) are open domain in L̃, preserved by548

the deck transformations. Their projections in L are denoted respectively by i+(L) and549

i−(L).550

We invite the reader to convince himself that the RP
1-structure and the additional551

data of i±(L) determine the (�p, �(p))-structure on the link, hence the HS-singular552

point up to HS-isomorphism.553

In the sequel, we present all the possible types of singularities, according to the554

position in HS2 of the reference point p, and according to the degree of the underlying555

RP
1-circle. Some of them are called BTZ-like or Misner singularities; the reason for556

this terminology will be explained later in Sects. 3.7.4, 3.7.3, respectively.557

(1) time-like singularities: We have already observed that they are easily classified:558

they can be considered as H
2-singularities. They are characterized by their cone559

angle, and by their future/past quality.560
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(2) space-like singularities of degree 0: Let L be a space-like singularity of degree561

0, i.e. a (�p, �(p))-circle such that the underlying hyperbolic RP
1-circle has562

degree 0. Then the holonomy of L is generated by a hyperbolic element g, and563

L is isomorphic to the quotient of an interval I of �(p) by the group 〈g〉 gen-564

erated by g. The extremities of I are fixed points of g, therefore we have three565

possibilities:566

• If I = i+(�(p)), then L = i+(L) and i−(L) = ∅. The singularity is then called567

a BTZ-like past singularity.568

• If I = i−(�(p)), then L = i−(L) and i+(L) = ∅. The singularity is then called569

a BTZ-like future singularity.570

• If I is a component of �(p) \ (i+(�(p)) ∪ i−(�(p))), then i+(L) = i−(L) = ∅.571

The singularity is a Misner singularity.572

(3) light-like singularities of degree 0: When p lies in ∂H
2
+, and when the underlying573

parabolic RP
1-circle has degree 0, then L is the quotient of i+(�(p)) or i−(�(p))574

by a parabolic element.575

• If I = i+(�(p)), then L = i+(L) and i−(L) = ∅. The singularity is then called a576

future cuspidal singularity. Indeed, in that case, a neighborhood of the singular577

point in e(L) with the singular point removed is an annulus locally modelled578

on the quotient of H
2
+ by a parabolic isometry, i.e., a hyperbolic cusp.579

• If I = i−(�(p)), then L = i−(L) and i+(L) = ∅. The singularity is then called580

a extreme BTZ-like future singularity.581

The case where p lies in ∂H
2− and L of degree 0 is similar; we get the notion of582

past cuspidal singularity and extreme BTZ-like past singularity.583

(4) space-like singularities of degree k ≥ 1: when the singularity is space-like of degree584

k ≥ 1, i.e. when L is a hyperbolic (�p, �(p))-circle of degree ≥ 1, the situation585

is slightly more complicated. In that situation, L is the quotient of the universal586

covering L̃ p ≈ ˜RP
1

by a group generated by an element of the form δk g, where δ587

is in the center of G̃ and g admits fixed points in L̃ p. Let I ± be the preimage in L̃ p588

of i±(�(p)) by the developing map. Let x0 be a fixed point of g in L̃ p which is a589

left extremity of a component of I + (recall that we have prescribed an orientation,590

i.e. an order, on the universal covering of any RP
1-circle: the one for which the591

developing map is increasing). Then, this component is an interval ]x0, x1[, where592

x1 is another g-fixed point. All the other g-fixed points are the iterates x2i = δi x0593

and x2i+1 = δi x1. The components of I + are the intervals δ2i ]x0, x1[ and the com-594

ponents of I − are δ2i+1]x0, x1[. It follows that the degree k is an even integer. We595

have a dichotomy:596

• If, for every integer i , the point x2i (i.e. the left extremities of the components597

of I +) is a repelling fixed point of g, then the singularity is a positive space-like598

singularity of degree k.599

• In the other case, i.e. if the left extremities of the components of I + are attract-600

ing fixed points of g, then the singularity is a negative space-like singularity of601

degree k.602

In other words, the singularity is positive if and only if for every x in I + we have603

gx ≥ x .604

(5) light-like singularities of degree k ≥ 1: Similarly, parabolic (�p, �(p))-circles have605

even degree, and the dichotomy past/future among parabolic (�p, �(p))-circles of606

degree ≥ 2 splits into two subcases: the positive case for which the parabolic607

element g satisfies gx ≥ x on L̃ p, and the negative case satisfying the reverse608
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Fig. 1. A cuspidal singularity appears by taking the quotient of a half-sphere in HS2 containing H
2
+ and tangent

to ∂H
2
+ at a point p. The opposite point −p then corresponds to a past extreme BTZ-like singularity

inequality (this positive/negative dichotomy is inherent of the structure of ˜RP
1
-cir-609

cle data, cf. the end of Sect. 3.3.1).610

Remark 3.9. In the previous section we observed that there is only one RP
1 hyperbolic611

circle of holonomy 〈g〉 up to RP
1-isomorphism, but this remark does not extend to612

hyperbolic (�p, �(p))-circles since a real projective conjugacy between g and g−1, if613

preserving the orientation, must permute time-like and space-like components. Hence614

positive hyperbolic (�p, �(p))-circles and negative hyperbolic (�p, �(p))-circles are615

not isomorphic.616

Remark 3.10. Let L be a (�p, �(p))-circle. The suspension e(L) admits two singular617

points p̄, − p̄, corresponding to p and −p. Observe that when p is space-like, p̄ and618

− p̄, as HS-singularities, are always isomorphic. When p is time-like, one of the sin-619

gularities is future time-like and the other is past time-like. If p̄ is a future light-like620

singularity of degree k ≥ 1, then − p̄ is a past light-like singularity of degree k, and vice621

versa.622

Finally, let p̄ be a future cuspidal singularity. The (�p, �(p))-circle L is the quotient623

by a cyclic group of the set of rays in Tp HS2 tangent to projective rays contained in H
2
+.624

It follows that the suspension e(L) is a cyclic quotient of the domain in HS2 delimited625

by the projective line tangent to ∂H
2
+ at p and containing H

2
+. This half-space does not626

contain H
2−. It follows that − p̄ is not a past cuspidal singularity, but rather a past extreme627

BTZ-like singularity (see Fig. 1).628

3.4. Singular HS-surfaces. Once we know all possible HS-singularities, we can define629

singular HS-surfaces:630

Definition 3.11. A singular HS-surface � is an oriented surface containing a discrete631

subset S such that � \ S is a regular HS-surface, and such that every p in S admits a632

neighborhood HS-isomorphic to an open subset of the suspension e(L) of a (�p, �(p))-633

circle L.634

The construction of AdS-manifolds e(�) extends to singular HS-surfaces:635

Definition 3.12. A singular AdS spacetime is a 3-manifold M containing a closed subset636

L (the singular set) such that M \ L is a regular AdS-spacetime, and such that every637

x in L admits a neighborhood AdS-isomorphic to the suspension e(�) of a singular638

HS-surface.639
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Since we require M to be a manifold, each cone e(�) must be a 3-ball, i.e. each640

surface � must be actually homeomorphic to the 2-sphere.641

There are two types of points in the singular set of a singular AdS spacetime:642

Definition 3.13. Let M be a singular AdS spacetime. A singular line in M is a connected643

subset of the singular set composed of the points x such that every neighborhood of x644

is AdS-isomorphic to the suspension e(�x ), where �x is a singular HS-surface e(Lx ),645

where Lx is a (�p, �(p))-circle. An interaction (or collision) in M is a point x in the646

singular set which is not on a singular line.647

Consider point x in a singular line. Then, by definition, a neighborhood U of x is648

isomorphic to the suspension e(�x ), where the HS-sphere �x is the suspension of a649

(�p, �(p))-circle L . The suspension e(L) contains precisely two opposite points p̄ and650

− p̄. Each of them defines a ray in U , and every point x ′ in these rays are singular points,651

whose links are also described by the same singular HS-sphere e(L).652

Therefore, we can define the type of the singular line: it is the type of the (�p, �(p))-653

circle describing the singularity type of each of its elements. Therefore, a singular line654

is time-like, space-like or light-like, and it has a degree.655

On the other hand, when x is an interaction, then the HS-sphere �x is not the sus-656

pension of a (�p, �(p))-circle. Let p̄ be a singularity of �x . It defines in e(�x ) a ray,657

and for every y in this ray, the link of y is isomorphic to the suspension e(L) of the658

(�p, �(p))-circle defining the singular point p̄.659

It follows that the interactions form a discrete closed subset. In the neighborhood660

of an interaction, with the interaction removed, the singular set is an union of singular661

lines, along which the singularity-type is constant (however see Remark 3.10).662

3.5. Classification of singular lines. The classification of singular lines, i.e. of663

(�p, �(p))-circles, follows from the classification of singularities of singular664

HS-surfaces:665

• time-like lines,666

• space-like or light-like line of degree 2,667

• BTZ-like singular lines, extreme or not, past or future,668

• Misner lines,669

• space-like or light-like line of degree k ≥ 4. Recall that the degree is necessarily670

even.671

Indeed, according to Remark 3.10, what could have been called a cuspidal singular672

line, is actually an extreme BTZ-like singular line.673

3.6. Local future and past of singular points. In the previous section, we almost com-674

pleted the proof of Proposition 3.1, except that we still have to describe, as stated in this675

proposition, what is the future and the past of the singular line (in particular, that the676

future and the past of non-time-like lines of degree k ≥ 2 has k/2 connected compo-677

nents), and to see that Misner lines are surrounded by closed causal curves.678

Let M be a singular AdS-manifold M . Outside the singular set, M is isometric to an679

AdS manifold. Therefore one can define as usual the notion of time-like or causal curve,680

at least outside singular points.681

If x is a singular point, then a neighborhood U of x is isomorphic to the suspension682

of a singular HS-surface �x . Every point in �x , singular or not, is the direction of a683
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line � in U starting from x . When x is singular, � is a singular line, in the meaning of684

Definition 3.13; if not, �, with x removed, is a geodesic segment. Hence, we can extend685

the notion of causal curves, allowing them to cross an interaction or a space-like singular686

line, or to go for a while along a time-like or a light-like singular line.687

Once this notion is introduced, one can define the future I +(x) of a point x as the688

set of final extremities of future oriented time-like curves starting from x . Similarly, one689

defines the past I −(x), and the causal past/future J±(x).690

Let H
+
x (resp. H

−
x ) be the set of future (resp. past) time-like elements of the HS-sur-691

face �x . It is easy to see that the local future of x in e(�x ), which is locally isometric692

to M , is the open domain e(H+
x ) ⊂ e(�x ). Similarly, the past of x in e(�x ) is e(H−

x ).693

It follows that the causality relation in the neighborhood of a point in a time-like694

singular line has the same feature as the causality relation near a regular point: the695

local past and the local future are non-empty connected open subsets, bounded by light-696

like geodesics. The same is true for a light-like or space-like singular line of degree697

exactly 2.698

On the other hand, points in a future BTZ-like singularity, extreme or not, have no699

future, and only one past component. This past component is moreover isometric to the700

quotient of the past of a point in ÃdS3 by a hyperbolic (parabolic in the extreme case)701

isometry fixing the point. Hence, it is homeomorphic to the product of an annulus by702

the real line.703

If L has degree k ≥ 4, then the local future of a singular point in e(e(L)) admits k/2704

components, hence at least 2, and the local past as well. This situation is quite unusual,705

and in our further study we exclude it: from now on, we always assume that light-like706

or space-like singular lines have degree 0 or 2.707

Points in Misner singularities have no future, and no past. Besides, any neighborhood708

of such a point contains closed time-like curves (CTC in short). Indeed, in that case,709

e(L) is obtained by glueing the two space-like sides of a bigon entirely contained in the710

de Sitter region dS2 by some isometry g, and for every point x in the past side of this711

bigon, the image gx lies in the future of x : any time-like curve joining x to gx induces712

a CTC in e(L). But:713

Lemma 3.14. Let � be a singular HS-surface. Then the singular AdS-manifold e(�)714

contains closed causal curves (CCC in short) if and only if the de Sitter region715

of � contains CCC. Moreover, if it is the case, every neighborhood of the vertex of716

e(�) contains a CCC of arbitrarily small length.717

Proof. Let p̄ be the vertex of e(�). Let H
±
p̄ denote the future and past hyperbolic part718

of �, and let dS p̄ be the de Sitter region in �. As we have already observed, the future719

of p̄ is the suspension e(H+
p̄). Its boundary is ruled by future oriented lightlike lines,720

singular or not. It follows, as in the regular case, that any future oriented time-like line721

entering in the future of p̄ remains trapped therein and cannot escape anymore: such a722

curve cannot be part of a CCC. Furthermore, the future e(H+
p̄) is isometric to the prod-723

uct (−π/2, π/2) × H
+
p̄ equipped with the singular Lorentz metric −dt2 + cos2(t)ghyp,724

where ghyp is the singular hyperbolic metric with cone singularities on H
+
p̄ induced by725

the HS-structure. The coordinate t induces a time function, strictly increasing along726

causal curves. Therefore, e(H+
p̄) contains no CCC.727

It follows that CCC in e(�) avoid the future of p̄. Similarly, they avoid the past of728

p̄: all CCC are entirely contained in the suspension e(dS2
p̄) of the de Sitter region of �.729
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For any real number ε, let fε : dS2
p̄ → e(dS2

p̄) be the map associating to v in the730

de Sitter region the point at distance ε to p̄ on the space-like geodesic r(v). Then the731

image of fε is a singular Lorentzian submanifold locally isometric to the de Sitter space732

rescaled by a factor λ(ε). Moreover, fε is a conformal isometry: its differential multiply733

by λ(ε) the norms of tangent vectors. Since λ(ε) tends to 0 with ε, it follows that if �734

has a CCC, then e(�) has a CCC of arbitrarily short length.735

Conversely, if e(�) has a CCC, it can be projected along the radial directions on a736

surface corresponding to a fixed value of ε, keeping it causal, as can be seen from the737

explicit form of the metric on e(�) above. It follows that, when e(�) has a CCC, � also738

has one. This finishes the proof of the lemma. ��739

The proof of Proposition 3.1 is now complete.740

Remark 3.15. All this construction can be adapted, with minor changes, to the flat or de741

Sitter situation, leading to a definition of singular flat or de Sitter spacetimes, locally mod-742

eled on suspensions of singular HS-surfaces. For examples, in the proof of Lemma 3.14,743

one has just to change the metric −dt2 + cos2(t)ghyp by −dt2 + y2ghyp in the flat case,744

and by −dt2 + cosh2(t)ghyp in the de Sitter case.745

From now on, we will restrict our attention to HS-surfaces without CCC and corre-746

sponding to singular points where the future and the past, if non-empty, are connected:747

Definition 3.16. A singular HS-surface is causal if it admits no singularity of degree748

≥ 4 and no CCC. A singular line is causal if the suspension e(L) of the associated749

(�p, �(p))-circle L is causal.750

In other words, a singular HS-surface is causal if the following singularity types are751

excluded:752

• space-like or light-like singularities of degree ≥ 4,753

• Misner singularities.754

3.7. Geometric description of HS-singularities and AdS singular lines. The approach755

of singular lines we have given so far has the advantage to be systematic, but is quite756

abstract. In this section, we give cut-and-paste constructions of singular AdS-spacetimes757

which provide a better insight on the geometry of AdS singularities.758

3.7.1. Massive particles. Let D be a domain in ÃdS3 bounded by two time-like totally759

geodesic half-planes P1, P2 sharing as common boundary a time-like geodesic c. The760

angle θ of D is the angle between the two geodesic rays H ∩ P1, H ∩ P2 issued from761

c ∩ H , where H is a totally geodesic hyperbolic plane orthogonal to c. Glue P1 to P2762

by the elliptic isometry of ÃdS3 fixing c pointwise. The resulting space, up to isometry,763

only depends on θ , and not on the choices of c and of D with angle θ . The complement764

of c is locally modeled on AdS3, while c corresponds to a cone singularity with some765

cone angle θ .766

We can also consider a domain D, still bounded by two time-like planes, but not767

embedded in ÃdS3, wrapping around c, maybe several times, by an angle θ > 2π .768

Glueing as above, we obtain a singular spacetime with angle θ > 2π .769

In these examples, the singular line is a time-like singular line, and all time-like770

singular lines are clearly produced in this way.771
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Remark 3.17. There is an important literature in physics involving such singularities, in772

the AdS background like here or in the Minkowski space background, where they are773

called wordlines, or cosmic strings, describing a massive particle in motion, with mass774

m := 1 − θ/2π . Hence θ > 2π corresponds to particles with negative mass - but they775

are usually not considered in physics. See for example [Car03, p. 41-42]. Let us mention776

in particular a famous example by R. Gott in [Got91], followed by several papers (for777

example, [Gra93,CFGO94,Ste94]) where it is shown that a (flat) spacetime containing778

two such singular lines may present some causal pathology at large scale.779

3.7.2. Tachyons. Consider a space-like geodesic c in ÃdS3, and two time-like totally780

geodesic planes Q1, Q2 containing c. We will also consider the two light-like totally781

geodesic subspaces L1 and L2 of ÃdS3 containing c, and, more generally, the space P of782

totally geodesic subspaces containing c. Observe that the future of c, near c, is bounded783

by L1 and L2.784

We choose an orientation of c: the orientation of ÃdS3 then induces a (counterclock-785

wise) orientation on P , hence on every loop turning around c. We choose the indexation786

of the various planes Q1, Q2, L1 and L2 such that every loop turning counterclockwise787

around x , enters in the future of c through L1, then crosses successively Q1, Q2, and788

finally exits from the future of c through L2. Observe that if we had considered the past789

of c instead of the future, we would have obtained the same indexation.790

The planes Q1 and Q2 intersect each other along infinitely many space-like geode-791

sics, always under the same angle. In each of these planes, there is an open domain Pi792

bounded by c and another component c+ of Q1 ∩ Q2 in the future of c and which does793

not intersect another component of Q1 ∩ Q2. The component c+ is a space-like geodesic,794

which can also be defined as the set of first conjugate points in the future of points in c795

(cf. the end of Sect. 2.2).796

The union c ∪ c+ ∪ P1 ∪ P2 disconnects ÃdS3. One of these components, denoted797

W , is contained in the future of c and the past of c+. Let D be the other component,798

containing the future of c+ and the past of c. Consider the closure of D, and glue P1799

to P2 by a hyperbolic isometry of ÃdS3 fixing every point in c and c+. The resulting800

spacetime contains two space-like singular lines, still denoted by c, c+, and is locally801

modeled on AdS3 on the complement of these lines (see Fig. 2).802

Clearly, these singular lines are space-like singularities, isometric to the singularities803

associated to a space-like (�p, �(p))-circle L of degree two. We claim furthermore that804

c is positive. Indeed, the (�p, �(p))-circle L is naturally identified with P . Our choice805

of indexation implies that the left extremity of i+(L) is L1. Since the holonomy sends806

Q1 onto Q2, the left extremity L1 is a repelling fixed point of the holonomy. Therefore,807

the singular line corresponding to c is positive according to our terminology.808

On the other hand, a similar reasoning shows that the space-like singular line c+ is809

negative. Indeed, the totally geodesic plane L1 does not correspond anymore to the left810

extremities of the time-like components in the (�p, �(p))-circle associated to c+, but to811

the right extremities.812

Remark 3.18. Consider a time-like geodesic � in ÃdS3, hitting the boundary of the future813

of c at a point in P1. This geodesic corresponds to a time-like geodesic �′ in the singular814

spacetime defined by our cut-and-paste surgery which coincides with � before crossing815

P1, and, after the crossing, with the image �′ of � by the holonomy. The direction of �′
816

is closer to L2 than was �.817
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Fig. 2. By removing the domain W and glueing P1 to P2 one gets a spacetime with two tachyons. If we keep
W and glue P1 to P2, we obtain a spacetime with one future BTZ singular line and one past BTZ singular line

In other words, the situation is as if the singular line c were attracting the lightrays,818

i.e. had positive mass. This is the reason why we call c a positive singular line (Sect. 3.8).819

There is an alternative description of these singularities: start again from a space-like820

geodesic c in ÃdS3, but now consider two space-like half-planes S1, S2 with common821

boundary c, such that S2 lies above S1, i.e. in the future of S1, and such that every time-822

like geodesic intersecting S1 intersects S2 (see Fig. 3). Then remove the intersection V823

between the past of S2 and the future of S1, and glue S1 to S2 by a hyperbolic isometry824

fixing every point in c. The resulting singular spacetime contains a singular space-like825

line. It should be clear to the reader that this singular line is space-like of degree 2 and826

negative. If instead of removing a wedge V we insert it in the spacetime obtained by827

cutting ÃdS3 along a space-like half-plane S, we obtain a spacetime with a positive828

space-like singularity of degree 2.829

Last but not least, there is another way to construct space-like singularities of degree830

2. Given the space-like geodesic c, let L+
1 be the future component of L1 \ c. Cut along831

L+
1 , and glue back by a hyperbolic isometry γ fixing every point in c. More precisely,832

we consider the singular spacetime such that for every future oriented time-like curve833

in ÃdS3 \ L+
1 terminating at L+

1, a point x can be continued in the singular spacetime834

by a future oriented time-like curve starting from γ x . Once more, we obtain a singular835

AdS-spacetime containing a space-like singular line of degree 2. We leave to the reader836

the proof of the following fact: the singular line is positive mass if and only if for every837

x in L+
1 the light-like segment [x, γ x] is past-oriented, i.e. γ sends every point in L+

1 in838

its own causal past.839

Remark 3.19. As a corollary we get the following description space-like HS-singulari-840

ties of degree 2: consider a small disk U in dS2 and a point x in U . Let r be one light-like841

geodesic ray contained in U issued from x , cut along it and glue back by a hyperbolic842

dS2-isometry γ like described in Fig. 4 (be careful that in this figure, the isometry, glue-843

ing the future copy of r in the boundary of U \ r into the past copy of r ; hence γ is844

the inverse of the holonomy). Observe that one cannot match one side on the other, but845

the resulting space is still homeomorphic to the disk. The resulting HS-singularity is846
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Fig. 3. The cylinder represents the boundary of the conformal model of AdS. If we remove the domain V and
glue S1 to S2 we get a spacetime with one tachyon. If we keep V and glue S1 to S2, we obtain a spacetime
with one Misner singular line

Fig. 4. Construction of a positive space-like singular line of degree 2

space-like, of degree 2. If r is future oriented, the singularity is positive if and only if847

for every y in r the image γ y lies in the future of y. If r is past oriented, the singularity848

is positive if and only if γ y lies in the past of y for every y in r .849

Remark 3.20. As far as we know, this kind of singular line is not considered in physics850

literature. However, it is a very natural extension of the notion of massive particles.851
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It sounds to us natural to call these singularities, representing particles faster than light,852

tachyons, which can be positive or negative, depending on their influence on lightrays.853

Remark 3.21. Space-like singularity of any (even) degree 2k can be constructed as k-854

branched cover of a space-like singularity of degree 2. In other words, they are obtained855

by identifying P1 and P2, but now seen as the boundaries of a wedge turning k times856

around c.857

3.7.3. Misner singularities. Let S1, S2 be two space-like half-planes with common858

boundary as appearing in the second version of definition of tachyons in the previ-859

ous section, with S2 lying in the future of S1. Now, instead of removing the intersection860

V between the future of S1 and the past of S2, keep it and remove the other part (the main861

part!) of ÃdS3. Glue its two boundary components S1, S2 by an AdS-isometry fixing c862

pointwise. The reader will easily convince himself that the resulting spacetime contains863

a space-like line of degree 0, i.e. what we have called a Misner singular line (see Fig. 3).864

The reason of this terminology is that this kind of singularity is often considered, or865

mentioned2, in papers dedicated to gravity in dimension 2 + 1, maybe most of the time866

in the Minkowski background, but also in the AdS background. They are attributed to867

Misner who considered the 3 + 1-dimensional analog of this spacetime (for example, the868

glueing is called “Misner identification” in [DS93]; see also [GL98]).869

3.7.4. BTZ-like singularities. Consider the same data (c, c+, P1, P2) used for the870

description of tachyons, i.e. space-like singularities, but now remove D, and glue the871

boundaries P1, P2 of W by a hyperbolic element γ0 fixing every point in c. The resulting872

space is a manifold B containing two singular lines, that we abusively still denote c and873

c+, and is locally AdS3 outside c, c+ (see Fig. 2). Observe that every point of B lies in874

the past of the singular line corresponding to c+ and in the future of the singular line875

corresponding to c. It follows easily that c is a BTZ-like past singularity, and that c+ is876

a BTZ-like future singularity.877

Remark 3.22. Let E be the open domain in ÃdS3, intersection between the future of c878

and the past of c+. Observe that W \ P1 is a fundamental domain for the action on E879

of the group 〈γ0〉 generated by γ0. In other words, the regular part of B is isometric880

to the quotient E/〈γ0〉. This quotient is precisely a static BTZ black-hole as first intro-881

duced by Bañados, Teitelboim and Zanelli in [BTZ92] (see also [Bar08a,Bar08b]). It is882

homeomorphic to the product of the annulus by the real line. The singular spacetime B883

is obtained by adjoining to this BTZ black-hole two singular lines: this follows that B is884

homeomorphic to the product of a 2-sphere with the real line in which c+ and c can be885

naturally considered respectively as the future singularity and the past singularity. This886

is the explanation of the “BTZ-like” terminology. More details will be given in Sect. 7.3.887

Remark 3.23. This kind of singularity appears in several papers in the physics literature.888

We point out among them the excellent paper [HM99] where Gott’s construction quoted889

above is adapted to the AdS case, and where a complete and very subtle description890

of singular AdS-spacetimes interpreted as the creation of a BTZ black-hole by a pair891

of light-like particles, or by a pair of massive particles is provided. In our terminology,892

these spacetimes contains three singularities: a pair of light-like or time-like positive893

singular lines, and a BTZ-like future singularity. These examples show that even if all894

2 Essentially because of their main feature pointed out in Sect. 3.6: they are surrounded by CTC.
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the singular lines are causal, in the sense of Definition 3.16, a singular spacetime may895

exhibit big CCC due to a more global phenomenon.896

3.7.5. Light-like and extreme BTZ-like singularities. The definition of a light-like sin-897

gularity is similar to that of space-like singularities of degree 2 (tachyons), but starts with898

the choice of a light-like geodesic c in ÃdS3. Given such a geodesic, we consider another899

light-like geodesic c+ in the future of c, and two disjoint time-like totally geodesic annuli900

P1, P2 with boundary c ∪ c+.901

More precisely, consider pairs of space-like geodesics (cn, cn
+) as those appearing in902

the description of tachyons, contained in time-like planes Qn
1, Qn

2, so that cn converge903

to the light-like geodesic c. Then, cn
+ converge to a light-like geodesic c+, whose past904

extremity in the boundary of ÃdS3 coincide with the future extremity of c. The time-like905

planes Qn
1, Qn

2 converge to time-like planes Q1, Q2 containing c and c+. Then Pi is the906

annulus bounded in Qi by c and c+. Glue the boundaries P1 and P2 of the component907

D of ÃdS3 \ (P1 ∪ P2) contained in the future of c by an isometry of ÃdS3 fixing every908

point in c (and in c+): the resulting space is a singular AdS-spacetime, containing two909

singular lines, abusely denoted by c, c+. As in the case of tachyons, we can see that these910

singular lines have degree 2, but they are light-like instead of space-like. The line c is911

called positive, and c+ is negative.912

Similarly to what happens for tachyons, there is an alternative way to construct light-913

like singularities: let L be one of the two light-like half-planes bounded by c. Cut ÃdS3914

along L , and glue back by an isometry γ fixing pointwise c: the result is a singular915

spacetime containing a light-like singularity of degree 2.916

Finally, extreme BTZ-like singularities can be described in a way similar to what917

we have done for (non extreme) BTZ-like singularities. As a matter of fact, when we918

glue the wedge W between P1 and P2 we obtain a (static) extreme BTZ black-hole as919

described in [BTZ92] (see also [Bar08b, Sect. 3.2, Sect. 10.3]). Further comments and920

details are left to the reader.921

Remark 3.24. Light-like singularities of degree 2 appear very frequently in physics,922

where they are called wordlines, or cosmic strings, of massless particles, or even some-923

times “photons” ([DS93]).924

Remark 3.25. As in the case of tachyons (see Remark 3.21) one can construct light-like925

singularities of any degree 2k by considering a wedge turning k times around c before926

glueing its boundaries.927

Remark 3.26. A study similar to what has been done in Remark 3.18 shows that positive928

photons attract lightrays, whereas negative photons have a repelling behavior.929

Remark 3.27. However, there is no positive/negative dichotomy for BTZ-like singular-930

ities, extreme or not.931

Remark 3.28. From now on, we allow ourselves to qualify HS-singularities according to932

the nature of the associated AdS-singular lines: an elliptic HS-singularity is a (massive)933

particle, a space-like singularity is a tachyon, positive or negative, etc...934

Remark 3.29. Let [p1, p2] be an oriented arc in ∂H
2
+, and for every x in H

2
+ consider935

the elliptic singularity (with positive mass) obtained by removing the wedge composed936

of geodesic rays issued from x and with extremity in [p1, p2], and glueing back by an937
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elliptic isometry. Move x until it reaches a point x∞ in ∂H
2 \ [p1, p2]. It provides a938

continuous deformation of an elliptic singularity to a light-like singularity, which can be939

continued further into dS2 by a continuous sequence of space-like singularities. Observe940

that the light-like (resp. space-like) singularities appearing in this continuous family are941

positive (resp. have positive mass).942

3.8. Positive HS-surfaces. Among singular lines, i.e. “particles”, we can distinguish the943

ones having an attracting behavior on lightrays (see Remark 3.17, 3.18, 3.26):944

Definition 3.30. A HS-surface, an interaction or a singular line is positive if all space-945

like and light-like singularities of degree ≥ 2 therein are positive, and if all time-like946

singularities have a cone angle less than 2π .947

4. Particle Interactions and Convex Polyhedra948

This short section briefly describes a relationship between interactions of particles in949

3-dimensional AdS manifolds, HS-structure on the sphere, and convex polyhedra in950

HS3, the natural extension of the hyperbolic 3-dimensional by the de Sitter space.951

Convex polyhedra in HS3 provide a convenient way to visualize a large variety of952

particle interactions in AdS manifolds (or more generally in Lorentzian 3-manifolds).953

This section should provide the reader with a wealth of examples of particle interactions954

– obtained from convex polyhedra in HS3 – exhibiting various interesting behaviors. It955

should then be easier to follow the classification of positive causal HS-surfaces in the956

next section.957

The relationship between convex polyhedra and particle interactions might however958

be deeper than just a convenient way to construct examples. It appears that many, and959

possibly all, particle interactions in an AdS manifold satisfying some natural conditions960

correspond to a unique convex polyhedron in HS3. This deeper aspect of the relation-961

ship between particle interactions and convex polyhedra is described in Sect. 4.5 only962

in a special case: interactions between only massive particles and tachyons. It appears963

likely that it extends to a more general context, however it appears preferable to restrict964

those considerations here to a special case which, although already exhibiting interesting965

phenomena, avoids the technical complications of the general case.966

4.1. The space HS3. The definition used above for HS2 can be extended as it is to higher967

dimensions. So HS3 is the space of geodesic rays starting from 0 in the four-dimensional968

Minkowski space R
3,1. It admits a natural action of SO0(1, 3), and has a decomposition969

in 5 components:970

• The “upper” and “lower” hyperbolic components, denoted by H3
+ and H3−, corre-971

sponding to the future-oriented and past-oriented time-like rays. On those two com-972

ponents the angle between geodesic rays corresponds to the hyperbolic metric on973

H3.974

• The domain d S3 composed of space-like geodesic rays.975

• The two spheres ∂ H3
+ and ∂ H3− which are the boundaries of H3

+ and H3−, respectively.976

We call Q their union.977

There is a natural projective model of HS3 in the double cover of RP
3 – we have to978

use the double cover because HS3 is defined as a space of geodesic rays, rather than as a979
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Fig. 5. Three types of polyhedra in HS3

space of geodesics containing 0. This model has the key feature that the connected com-980

ponents of the intersections of the projective lines with the de Sitter/hyperbolic regions981

correspond to the geodesics of the de Sitter/hyperbolic regions.982

Note that there is a danger of confusion with the notations used in [Sch98], since the983

space which we call HS3 here is denoted by H̃S
3

there, while the space HS3 in [Sch98]984

is the quotient of the space HS3 considered here by the antipodal action of Z/2Z.985

4.2. Convex polyhedra in HS3. In all this section we consider convex polyhedra in HS3
986

but will always suppose that they do not have any vertex on Q. We now consider such987

a polyhedron, calling it P .988

The geometry induced on the boundary of P depends on its position relative to the989

two hyperbolic components of HS3, and we can distinguish three types of polyhedra990

(Fig. 5).991

• polyhedra of hyperbolic type intersect one of the hyperbolic components of HS3, but992

not the other. We find for instance in this group:993

– the usual, compact hyperbolic polyhedra, entirely contained in one of the hyper-994

bolic components of HS3,995

– the ideal or hyperideal hyperbolic polyhedra,996

– the duals of compact hyperbolic polyhedra, which contain one of the hyperbolic997

components of HS3 in their interior.998

• polyhedra of bi-hyperbolic type intersect both hyperbolic components of HS3,999

• polyhedra of compact type are contained in the de Sitter component of HS3.1000

The terminology used here is taken from [Sch01].1001
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We will see below that polyhedra of bi-hyperbolic type play the simplest role in rela-1002

tion to particle interactions: they are always related to the simpler interactions involving1003

only massive particles and tachyons. Those of hyperbolic type are (sometimes) related1004

to particle interactions involving a BTZ-type singularity. Polyhedra of compact type1005

are the most exotic when considered in relation to particle interactions and will not be1006

considered much here, for reasons which should appear clearly below.1007

4.3. Induced HS-structures on the boundary of a polyhedron. We now consider the1008

geometric structure induced on the boundary of a convex polyhedron in HS3. Those1009

geometric structures have been studied in [Sch98,Sch01], and we will partly rely on1010

those references, while trying to make the current section as self-contained as possible.1011

Note however that the notion of HS metric used in [Sch98,Sch01] is more general than1012

the notion of HS-structure considered here.1013

In fact the geometric structure induced on the boundary of a convex polyhedron1014

P ⊂ HS3 is an HS-structure in some, but not all, cases, and the different types of1015

polyhedra behave differently in this respect.1016

4.3.1. Polyhedra of bi-hyperbolic type. This is the simplest situation: the induced geo-1017

metric structure is always a causal positive singular HS-structure.1018

The geometry of the induced geometric structure on those polyhedra is described in1019

[Sch01], under the condition that there there is no vertex on the boundary at infinity of1020

the two hyperbolic components of HS3. The boundary of P can be decomposed in three1021

components:1022

• A “future” hyperbolic disk D+ := ∂ P ∩ H3
+ , on which the induced metric is hyper-1023

bolic (with cone singularities at the vertices) and complete.1024

• A “past” hyperbolic disk D− = ∂ P ∩ H3−, similarly with a complete hyperbolic1025

metric.1026

• A de Sitter annulus, also with cone singularities at the vertices of P .1027

In other terms, ∂ P is endowed with an HS-structure. Moreover all vertices in the de1028

Sitter part of the HS-structure have degree 2.1029

A key point is that the convexity of P implies directly that this HS-structure is1030

positive: the cone angles are less than 2π at the hyperbolic vertices of P , while the1031

positivity condition is also satisfied at the de Sitter vertices. This can be checked by1032

elementary geometric arguments or can be found in [Sch01, Def. 3.1 and Thm. 1.3].1033

4.3.2. Polyhedra of hyperbolic type. In this case the induced geometric structure is1034

sometimes a causal positive HS-structure. The geometric structure on those polyhedra1035

is described in [Sch98], again when P has no vertex on ∂ H3
+ ∪ ∂ H3−.1036

Figure 6 shows on the left an example of polyhedron of hyperbolic type for which1037

the induced geometric structure is not an HS-structure, since the upper face (in gray) is1038

a space-like face in the de Sitter part of HS3, so that it is not modelled on HS2.1039

The induced geometric structure on the boundary of the polyhedron shown on the1040

right, however, is a positive causal HS-structure. At the upper and lower vertices, this1041

HS-structure has degree 0. The three “middle” vertices are contained in the hyperbolic1042

part of the HS-structure, and the positivity of the HS-structure at those vertices follows1043

from the convexity of the polyhedron.1044
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Fig. 6. Two polyhedra of hyperbolic type

Fig. 7. Two polyhedra of compact type

4.3.3. Polyhedra of compact type. In this case too, the induced geometric structure is1045

also sometimes a causal HS-structure.1046

On the left side of Fig. 7 we find an example of a polyhedron of compact type on1047

which the induced geometric structure is not an HS-structure – the upper face, in gray,1048

is a space-like face in the de Sitter component of HS3. On the right side, the geometric1049

structure on the boundary of the polyhedron is a positive causal HS-structure. All faces1050

are time-like faces, so that they are modelled on HS2. The upper and lower vertices1051

have degree 0, while the three “middle” vertices have degree 2, and the positivity of the1052

HS-structure at those points follows from the convexity of the polyhedron (see [Sch01]).1053

4.4. From a convex polyhedron to a particle interaction. When a convex polyhedron1054

has on its boundary an induced positive causal HS-structure, it is possible to consider1055

the interaction corresponding to this HS-structure.1056
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This interaction can be constructed from the HS-structure by a warped product metric1057

construction. It can also be obtained as in Sect. 2, by noting that each open subset of1058

the regular part of the HS-structure corresponds to a cone in Ad S3, and that those cones1059

can be glued in a way corresponding to the gluing of the corresponding domains in the1060

HS-structure.1061

The different types of polyhedra – in particular the examples in Fig. 7 and Fig. 6 –1062

correspond to different types of interactions.1063

4.4.1. Polyhedra of bi-hyperbolic type. For those polyhedra the hyperbolic vertices in1064

H3
+ (resp. H3−) correspond to massive particles leaving from (resp. arriving at) the inter-1065

action. The de Sitter vertices, at which the induced HS-structure has degree 2, correspond1066

to tachyons.1067

4.4.2. Polyhedra of hyperbolic type. In the example on the right of Fig. 6, the upper and1068

lower vertices correspond, through the definitions in Sect. 3, to two future BTZ-type1069

singularities (or two past BTZ-type singularities, depending on the time orientation).1070

The three middle vertices correspond to massive particles. The interaction correspond-1071

ing to this polyhedron therefore involves two future (resp. past) BTZ-type singularities1072

and three massive particles.1073

The interactions corresponding to polyhedra of hyperbolic type can be more com-1074

plex, in particular because the topology of the intersection of the boundary of a convex1075

polyhedron with the de Sitter part of HS3 could be a sphere with an arbitrary number of1076

disks removed. Those interactions can involve future BTZ-type singularities and massive1077

particles, but also tachyons.1078

4.4.3. Polyhedra of compact type. The interaction corresponding to the polyhedron at1079

the right of Fig. 7 is even more exotic. The upper vertex corresponds to a future BTZ-type1080

singularity, the lower to a past BTZ-type singularity, and the three middle vertices cor-1081

respond to tachyons. The interaction therefore involves a future BTZ-type singularity, a1082

past BTZ-type singularity, and three tachyons.1083

4.5. From a particle interaction to a convex polyhedron. This section describes, in a1084

restricted setting, a converse to the construction of an interaction from a convex poly-1085

hedron in HS3. We show below that, under an additional condition which seems to be1086

physically relevant, an interaction can always be obtained from a convex polyhedron in1087

HS3. Using the relation described in Sect. 2 between interactions and positive causal1088

HS-structures, we will relate convex polyhedra to those HS-structures rather than directly1089

to interactions.1090

This converse relation is described here only for simple interactions involving mas-1091

sive particles and tachyons.1092

4.5.1. A positive mass condition. The additional condition appearing in the converse1093

relation is natural in view of the following remark.1094

Remark 4.1. Let M be a singular AdS manifold, c be a cone singularity along a time-like1095

curve, with positive mass (angle less than 2π ). Let x ∈ c and let Lx be the link of M at1096

x , and let γ be a simple closed space-like geodesic in the de Sitter part of Lx . Then the1097

length of γ is less than 2π .1098
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Proof. An explicit description of Lx follows from the construction of the AdS metric in1099

the neighborhood of a time-like singularity, as seen in Sect. 2. The de Sitter part of this1100

link contains a unique simple closed geodesic, and its length is equal to the angle at the1101

singularity. So it is less than 2π .1102

In the sequel we consider a singular HS-structure σ on S2, which is the link of an1103

interaction involving massive particles and tachyons. This means that σ is positive and1104

causal, and moreover:1105

• it has two hyperbolic components, D− and D+, on which σ restricts to a complete1106

hyperbolic metric with cone singularities,1107

• any future-oriented inextendible time-like line in the de Sitter region of σ connects1108

the closure of D− to the closure of D+.1109

Definition 4.2. σ has positive mass if any simple closed space-like geodesic in the de1110

Sitter part of (S2, σ ) has length less than 2π .1111

This notion of positivity of mass for an interaction generalizes the natural notion of1112

positivity for time-like singularities.1113

4.5.2. A convex polyhedron from simpler interactions.1114

Theorem 4.3. Let σ be a positive causal HS-structure on S2, such that1115

• it has two hyperbolic components, D− and D+, on which σ restricts to a complete1116

hyperbolic metric with cone singularities,1117

• any future-oriented inextendible time-like line in the de Sitter region of σ connects1118

the closure of D− to the closure of D+.1119

Then σ is induced on a convex polyhedron in HS3 if and only if it has positive mass. If1120

so, this polyhedron is unique, and it is of bi-hyperbolic type.1121

Proof. This is a direct translation of [Sch01, Thm. 1.3] (see in particular case D.2). ��1122

The previous theorem is strongly related to classical statements on the induced met-1123

rics on convex polyhedra in the hyperbolic space, see [Ale05].1124

4.5.3. More general interactions/polyhedra. As mentioned above we believe that1125

Theorem 4.3 might be extended to wider situations. This could be based on the state-1126

ments on the induced geometric structures on the boundaries of convex polyhedra in1127

HS3, as studied in [Sch98,Sch01].1128

5. Classification of Positive Causal HS-Surfaces1129

In all this section � denotes a closed (compact without boundary) connected positive1130

causal HS-surface. It decomposes in three regions:1131

• Photons: a photon is a point corresponding in every HS-chart to points in ∂H
2±.1132

Observe that a photon might be singular, i.e. corresponds to a light-like singularity1133

(a lightlike singularity of degree one, a cuspidal singularity, or an extreme BTZ-like1134

singularity). The set of photons, denoted P(�), or simply P in the non-ambiguous1135

situations, is the disjoint union of a finite number of isolated points (extreme BTZ-like1136

singularities or cuspidal singularities) and of a compact embedded one dimensional1137

manifold, i.e. a finite union of circles.1138
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• Hyperbolic regions: They are the connected components of the open subset H
2(�)1139

of � corresponding to the time-like regions H
2± of HS2. They are naturally hyper-1140

bolic surfaces with cone singularities. There are two types of hyperbolic regions: the1141

future and the past ones. The boundary of every hyperbolic region is a finite union1142

of circles of photons and of cuspidal (parabolic) singularities.1143

• De Sitter regions: They are the connected components of the open subset dS2(�)1144

of � corresponding to the time-like regions dS2 of HS2. Alternatively, they are the1145

connected components of � \ P that are not hyperbolic regions. Every de Sitter1146

region is a singular dS surface, whose closure is compact and with boundary made1147

of circles of photons and of a finite number of extreme parabolic singularities.1148

5.1. Photons. Let C be a circle of photons. It admits two natural RP
1-structures, which1149

may not coincide if C contains light-like singularities.1150

Consider a closed annulus A in � containing C so that all HS-singularities in A lie1151

in C . Consider first the hyperbolic side, i.e. the component AH of A \ C comprising1152

time-like elements. Reducing A if necessary we can assume that AH is contained in1153

one hyperbolic region. Then every path starting from a point in C has infinite length in1154

AH , and conversely every complete geodesic ray in AH accumulates on an unique point1155

in C . In other words, C is the conformal boundary at ∞ of AH . Since the conformal1156

boundary of H
2 is naturally RP

1 and that hyperbolic isometries are restrictions of real1157

projective transformations, C inherits, as a conformal boundary of AH , a RP
1-structure1158

that we call RP
1-structure on C from the hyperbolic side.1159

Consider now the component AS in the de Sitter region adjacent to C . It is is foliated1160

by the light-like lines. Actually, there are two such foliations (for more details, see 5.31161

below). An adequate selection of this annulus ensures that the leaf space of each of1162

these foliations is homeomorphic to the circle - actually, there is a natural identification1163

between this leaf space and C : the map associating to a leaf its extremity. These foliations1164

are transversely projective: hence they induce a RP
1-structure on C .1165

This structure is the same for both foliations, we call it RP
1-structure on C from the1166

de Sitter side. In order to sustain this claim, we refer to [Mes07, § 6]: first observe that1167

C can be slightly pushed inside AS onto a space-like simple closed curve (take a loop1168

around C following alternatively past oriented light-like segments in leaves of one of1169

the foliations, and future oriented segments in the other foliation; and smooth it). Then1170

apply [Mes07, Prop. 17].1171

If C contains no light-like singularity, the RP
1-structures from the hyperbolic and de1172

Sitter sides coincide. But it is not necessarily true if C contains light-like singularities.1173

Actually, the holonomy from one side is obtained by composing the holonomy from the1174

other side by parabolic elements, one for each light-like singularity in C . Observe that1175

in general even the degrees may not coincide.1176

5.2. Hyperbolic regions. Every component of the hyperbolic region has a compact clo-1177

sure in �. It follows easily that every hyperbolic region is a complete hyperbolic surface1178

with cone singularities (corresponding to massive particles) and cusps (corresponding to1179

cuspidal singularities) and that is of finite type, i.e. homeomorphic to a compact surface1180

without boundary with a finite set of points removed.1181

Proposition 5.1. Let C be a circle of photons in �, and H the hyperbolic region adja-1182

cent to C. Let H̄ be the open domain in � comprising H and all cuspidal singularities1183

contained in the closure of H. Assume that H̄ is not homeomorphic to the disk. Then,1184

as a RP
1-circle defined by the hyperbolic side, the circle C is hyperbolic of degree 0.1185
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Proof. The proposition will be proved if we find an annulus in H containing no singu-1186

larity and bounded by C and a simple closed geodesic in H . Indeed, the holonomy of1187

the RP
1-structure of C coincides then with the holonomy of the RP

1-structure of the1188

closed geodesic, and it is well-known that closed geodesics in hyperbolic surfaces are1189

hyperbolic. Further details are left to the reader.1190

Since we assume that H̄ is not a disk, C represents a non-trivial free homotopy class1191

in H . Consider absolutely continuous simple loops in H freely homotopic to C in H ∪C .1192

Let L be the length of one of them. There are two compact subsets K ⊂ K ′ ⊂ H̄ such1193

that every loop of length ≤ 2L containing a point in the complement of K ′ stays outside1194

K and is homotopically trivial. It follows that every loop freely homotopic to C of length1195

≤ L lies in K ′: by Ascoli and semi-continuity of the length, one of them has minimal1196

length l0 (we also use the fact that C is not freely homotopic to a small closed loop1197

around a cusp of H , details are left to the reader). It is obviously simple, and it contains1198

no singular point, since every path containing a singularity can be shortened (observe1199

that since � is positive, cone angles of hyperbolic singular points are less than 2π ).1200

Hence it is a closed geodesic.1201

There could be several such closed simple geodesics of minimal length, but they are1202

two-by-two disjoint, and the annulus bounded by two such minimal closed geodesics1203

must contain at least one singularity since there is no closed hyperbolic annulus bounded1204

by geodesics. Hence, there is only a finite number of such minimal geodesics, and for1205

one of them, c0, the annulus A0 bounded by C and c0 contains no other minimal closed1206

geodesic.1207

If A0 contains no singularity, the proposition is proved. If not, for every r > 0, let1208

A(r) be the set of points in A0 at distance < r from c0, and let A′(r) be the complement1209

of A(r) in A0. For small values of r , A(r) contains no singularity. Thus, it is isometric1210

to the similar annulus in the unique hyperbolic annulus containing a geodesic loop of1211

length l0. This remark holds as long as A(r) is regular. Denote by l(r) the length of the1212

boundary c(r) of A(r).1213

Let R be the supremum of positive real numbers r0 such that for every r < r0 every1214

essential loop in A′(r) has length ≥ l(r). Since A0 contains no closed geodesic of length1215

≤ l0, this supremum is positive. On the other hand, let r1 be the distance between c0 and1216

the singularity x1 in A0 nearest to c0.1217

We claim that r1 > R. Indeed: near x1 the surface is isometric to a hyperbolic disk D1218

centered at x1 with a wedge between two geodesic rays l1, l2 issued from x1 of angle 2θ1219

removed. Let � be the geodesic ray issued from x1 made of points at equal distance from1220

l1 and from l2. Assume by contradiction r1 ≤ R. Then, c(r1) is a simple loop, containing1221

x1 and minimizing the length of loops inside the closure of A′(r1). Singularities of cone1222

angle 2π − 2θ < π cannot be approached by length minimizing closed loops, hence1223

θ ≤ π/2. Moreover, we can assume without loss of generality that c(r) near x1 is the1224

projection of a C1-curve ĉ in D orthogonal to � at x1, and such that the removed wedge1225

between l1, l2, and the part of D projecting into A(r) are on opposite sides of this curve.1226

For every ε > 0, let yε
1 , yε

2 be the points at distance ε from x1 in respectively l1, l2.1227

Consider the geodesic �ε
i at equal distance from yε

i and x1 (i = 1, 2): it is orthogonal1228

to li , hence not tangent to ĉ. It follows that, for ε small enough, ĉ contains a point pi1229

closer to yε
i than to x1. Hence, c(r1) can be shortened by replacing the part between p11230

and p2 by the union of the projections of the geodesics [pi , yε
i ]. This shorter curve is1231

contained in A′(r1): contradiction.1232

Hence R < r1. In particular, R is finite. For ε small enough, the annulus A′(R + ε)1233

contains an essential loop cε of minimal length < l(R + ε). Since it lies in A′(R), this1234
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loop has length ≥ l(R). On the other hand, there is α > 0 such that any essential loop1235

in A′(R + ε) contained in the α-neighborhood of c(R + ε) has length ≥ l(R + ε) > l(R).1236

It follows that cε is disjoint from c(R + ε), and thus, is actually a geodesic loop.1237

The annulus Aε bounded by cε and c(R + ε) cannot be regular: indeed, if it was,1238

its union with A(R + ε) would be a regular hyperbolic annulus bounded by two closed1239

geodesics. Therefore, Aε contains a singularity. Let A1 be the annulus bounded by C1240

and cε : every essential loop inside A1 has length ≥ l(R) (since it lies in A′(R)). It1241

contains strictly less singularities than A0. If we restart the process from this annulus,1242

we obtain by induction an annulus bounded by C and a closed geodesic inside T with1243

no singularity. ��1244

5.3. De Sitter regions. Let T be a de Sitter region of �. We recall that � is assumed to1245

be positive, i.e. that all non-time-like singularities of non-vanishing degree have degree1246

2 and are positive. This last feature will be essential in our study (cf. Remark 5.5).1247

Future oriented isotropic directions define two oriented line fields on the regular part1248

of T , defining two oriented foliations. Since we assume that � is causal, space-like1249

singularities have degree 2, and these foliations extend continuously on singularities1250

(but not differentially) as regular oriented foliations. Besides, in the neighborhood of1251

every BTZ-like singularity x , the leaves of each of these foliations spiral around x .1252

They thus define two singular oriented foliations F1, F2, where the singularities are1253

precisely the BTZ-like singularities, i.e. hyperbolic time-like ones, and have degree +1.1254

By Poincaré-Hopf index formula we immediately get:1255

Corollary 5.2. Every de Sitter region is homeomorphic to the annulus, the disk or the1256

sphere. Moreover, it contains at most two BTZ-like singularities. If it contains two such1257

singularities, it is homeomorphic to the 2-sphere, and if it contains exactly one BTZ-like1258

singularity, it is homeomorphic to the disk.1259

Let c : R → L be a parametrization of a leaf L of F i , increasing with respect to1260

the time orientation. Recall that the α-limit set (respectively ω-limit set) is the set of1261

points in T which are limits of a sequence (c(tn))(n∈N), where (tn)(n∈N) is a decreasing1262

(respectively an increasing) sequence of real numbers. By assumption, T contains no1263

CCC. Hence, according to the Poincaré-Bendixson Theorem:1264

Corollary 5.3. For every leaf L of F1 or F2, oriented by its time orientation, the α-limit1265

set (resp. ω-limit set) of L is either empty or a past (resp. future) BTZ-like singularity.1266

Moreover, if the α-limit set (resp. ω-limit set) is empty, the leaf accumulates in the past1267

(resp. future) direction to a past (resp. future) boundary component of T that is a point1268

in a circle of photons, or a extreme BTZ-like singularity.1269

Proposition 5.4. Let � be a positive, causal singular HS-surface. Let T be a de Sitter1270

component of � adjacent to a hyperbolic region H along a circle of photons C. If the1271

completion H̄ of H is not homeomorphic to the disk, then either T is a disk containing1272

exactly one BTZ-like singularity, or the boundary of T in � is the disjoint union of C1273

and one extreme BTZ-like singularity.1274

Proof. If T is a disk, we are done. Hence we can assume that T is homeomorphic to the1275

annulus. Reversing the time if necessary we also can assume that H is a past hyperbolic1276

component. Let C ′ be the other connected boundary component of T , i.e. its future1277

boundary. If C ′ is an extreme BTZ-like singularity, the proposition is proved. Hence we1278

are reduced to the case where C ′ is a circle of photons.1279
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Fig. 8. Regularization of a tachyon and a light-like singularity

According to Corollary 5.3 every leaf of F1 or F2 is a closed line joining the two1280

boundary components of T . For every singularity x in T , or every light-like singularity1281

in C , let Lx be the future oriented half-leaf of F1 emerging from x . Assume that Lx1282

does not contain any other singularity. Cut along Lx : we obtain a singular dS2-surface1283

T ∗ admitting in its boundary two copies of Lx . Since Lx accumulates to a point in C ′
1284

it develops in dS2 into a geodesic ray touching ∂H
2. In particular, we can glue the two1285

copies of Lx in the boundary of T ∗ by an isometry fixing their common point x . For1286

the appropriate choice of this glueing map, we obtain a new dS2-spacetime where x has1287

been replaced by a regular point: we call this process, well defined, regularization at x1288

(see Fig. 8).1289

After a finite number of regularizations, we obtain a regular dS2-spacetime T ′ (in1290

particular, if a given leaf of F1 initially contains several singularities, they are elimi-1291

nated during the process one after the other). Moreover, all these surgeries can actually1292

be performed on T ∪ C ∪ H : the de Sitter annulus A′ can be glued to H ∪ C , giving1293

rise to a HS-surface containing the circle of photons C disconnecting the hyperbolic1294

region H from the regular de Sitter region T ′ (however, the other boundary component1295

C ′ has been modified and does not match anymore the other hyperbolic region adjacent1296

to T ). Moreover, the circle of photons C now contains no light-like singularity, hence its1297

RP
1-structure from the de Sitter side coincides with the RP

1-structure from the hyper-1298

bolic side. According to Proposition 5.1 this structure is hyperbolic of degree 0: it is the1299

quotient of an interval I of RP
1 by a hyperbolic element γ0, with no fixed point inside I .1300

Denote by F ′
1, F ′

2 the isotropic foliations in T ′. Since we performed the surgery1301

along half-leaves of F1, leaves of F ′
1 are still closed in T ′. Moreover, each of them1302

accumulates at a unique point in C : the space of leaves of F ′
1 is identified with C . Let1303

˜T ′ be the universal covering of T ′, and let ˜F ′
1 be the lifting of F1. Recall that dS2 is1304

naturally identified with RP
1 × RP

1 \ D, where D is the diagonal. The developing map1305

D : ˜T ′ → RP
1 × RP

1 \ D maps every leaf of ˜F ′
1 into a fiber {∗} × RP

1. Besides, as1306

affine lines, they are complete affine lines, meaning that they still develop onto the entire1307

geodesic {∗} × (RP
1 \ {∗}). It follows that D is a homeomorphism between ˜T ′ and the1308
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Fig. 9. The domain W and its quotient T ′

open domain W = I × RP
1 \ D, i.e. the region in dS2 bounded by two γ0-invariant1309

isotropic geodesics. Hence T ′ is isometric to the quotient of W by γ0, which is well1310

understood (see Fig. 9; it has been more convenient to draw the lift W in the region in1311

˜RP
1 × ˜RP

1
between the graph of the identity map and the translation δ, a region which1312

is isomorphic to the universal cover of RP
1 × RP

1 \ D).1313

Hence the foliation F ′
2 admits two compact leaves. These leaves are CCC, but it is1314

not yet in contradiction with the fact that � is causal, since the regularization might1315

create such CCC.1316

The regularization procedure is invertible and T is obtained from T ′ by positive1317

surgeries along future oriented half-leaves of F ′
1, i.e. obeying the rules described in1318

Remark 3.19. We need to be more precise: pick a leaf L ′
1 of F ′

1. It corresponds to a1319

vertical line in W depicted in Fig. 9. We consider the first return f ′ map from L ′
1 to1320

L ′
1 along future oriented leaves of F ′

2: it is defined on an interval ] − ∞, x∞[ of L ′
1,1321

where −∞ corresponds to the end of L ′
1 accumulating on C . It admits two fixed points1322

x1 < x2 < x∞, corresponding to the two compact leaves of F ′
2. The former is attracting1323

2 2 0 1 3 1 8
Jour. No Ms. No.

B Dispatch: 3/9/2011
Total pages: 54
Disk Received ✓
Disk Used ✓

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

 P
ro

of

Collisions of Particles

Fig. 10. First return maps. The identification maps along lines above time-like and light-like singularities
compose the almost horizontal broken arcs which are contained in leaves of F2

and the latter is repelling. Let L1 be a leaf of F1 corresponding, by the reverse surgery,1324

to L ′
1. We can assume without loss of generality that L1 contains no singularity. Let f be1325

the first return map from L1 into itself along future oriented leaves of F2 (see Fig. 10).1326

There is a natural identification between L1 and L ′
1, and since all light-like singularities1327

and tachyons in T ∪ C are positive, the deviation of f with respect to f ′ is in the past1328

direction, i.e. for every x in L1 ≈ L ′
1 we have f (x) ≤ f ′(x) (it includes the case where1329

x is not in the domain of definition of f , in which case, by convention, f (x) = ∞). In1330

particular, f (x2) ≤ x2. It follows that the future part of the oriented leaf of F2 through1331

x2 is trapped below its portion between x2, f (x2). Since it is closed, and not compact, it1332

must accumulate on C . But it is impossible since future oriented leaves near C exit from1333

C , intersect a space-like loop, and cannot go back because of orientation considerations.1334

The proposition is proved. ��1335

Remark 5.5. In Proposition 5.4 the positivity hypothesis is necessary. Indeed, consider a1336

regular HS-surface made of one annular past hyperbolic region connected to one annular1337

future hyperbolic region by two de Sitter regions isometric to the region T ′ = W/〈γ0〉1338

appearing in the proof of Proposition 5.4. Pick up a photon x in the past boundary of one1339

of these de Sitter components T , and let L be the leaf of F1 accumulating in the past to1340

x . Then L accumulates in the future to a point y in the future boundary component. Cut1341

along L , and glue back by a parabolic isometry fixing x and y. The main argument in1342

the proof above is that if this surgery is performed in the positive way, so that x and y1343

become positive tachyons, then the resulting spacetime still admits two CCC, leaves of1344

the foliation F2. But if the surgery is performed in the negative way, with a sufficiently1345
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big parabolic element, the closed leaves of F2 in T are destroyed, and every leaf of the1346

new foliation F2 in the new singular surface joins the two boundary components of the1347

de Sitter region, which is therefore causal.1348

Theorem 5.6. Let � be a singular causal positive HS-surface, homeomorphic to the1349

sphere. Then, it admits at most one past hyperbolic component, and at most one future1350

hyperbolic component. Moreover, we are in one of the following mutually exclusive1351

situations:1352

(1) Causally regular case: There is a unique de Sitter component, which is an annu-1353

lus connecting one past hyperbolic region homeomorphic to the disk to a future1354

hyperbolic region homeomorphic to the disk.1355

(2) Interaction of black holes or white holes: There is no past or no future hyperbolic1356

region, and every de Sitter region is a either a disk containing a unique BTZ-like1357

singularity, or a disk with an extreme BTZ-like singularity removed.1358

(3) Big Bang and Big Crunch: There is no de Sitter region, and only one hyperbolic1359

region, which is a singular hyperbolic sphere - if the time-like region is a future1360

one, the singularity is called a Big Bang; if the time-like region is a past one, the1361

singularity is a Big Crunch.1362

(4) Interaction of a white hole with a black hole: There is no hyperbolic region. The sur-1363

face � contains one past BTZ-like singularity and one future BTZ-like singularity -1364

these singularities may be extreme or not.1365

Remark 5.7. This theorem, despite the terminology inspired from cosmology, has no1366

serious pretention of relevance for physics. However these appelations have the advan-1367

tage to provide a reasonable intuition on the geometry of the interaction. For example,1368

in what is called a Big Bang, the spacetime is entirely contained in the future of the1369

singularity, and the singular lines can be seen as massive particles or “photons” emitted1370

by the initial singularity.1371

Actually, it is one of few examples suggesting that the prescription of the surface �1372

to be a sphere could be relaxed: whereas it seems hard to imagine that the spacetime1373

could fail to be a manifold at a singular point describing a collision of particles, it is1374

nevertheless not so hard, at least for us, to admit that the topology of the initial singularity1375

may be more complicated, as it is the case in the regular case (see [ABB+07]).1376

Proof. If the future hyperbolic region and the past hyperbolic region is not empty, there1377

must be a de Sitter annulus connecting one past hyperbolic component to a future hyper-1378

bolic component. By Proposition 5.4 these hyperbolic components are disks: we are in1379

the causally regular case.1380

If there is no future hyperbolic region, but one past hyperbolic region, and at least1381

one de Sitter region, then there cannot be any annular de Sitter component connecting1382

two hyperbolic regions. Hence, the closure of each de Sitter component is a closed disk.1383

It follows that there is only one past hyperbolic component: � is an interaction of black1384

holes. Similarly, if there is a de Sitter region, a future hyperbolic region but no past1385

hyperbolic region, � is an interaction of white holes.1386

The remaining situations are the cases where � has no de Sitter region, or no hyper-1387

bolic region. The former case corresponds obviously to the description (3) of Big Bang1388

or Big Crunch , and the latter to the description (4) of an interaction between one black1389

hole and one white hole. ��1390

Remark 5.8. It is easy to construct singular hyperbolic spheres, i.e. Big Bang or Big1391

Crunch: take for example the double of a hyperbolic triangle. The existence of interac-1392

tions of a white hole with black hole is slightly less obvious. Consider the HS-surface1393
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�m associated to the BTZ black hole Bm . It can be described as follows: take a point1394

p in dS2, let d1, d2 be the two projective circles in HS containing p, its opposite −p,1395

and tangent to ∂H
2±. It decomposes HS2 in four regions. One of these components, that1396

we denote by U , contains the past hyperbolic region H
2−. Then, �m is the quotient of1397

U by the group generated by a hyperbolic isometry γ0 fixing p, −p, d1 and d2. Let1398

x1, x2 be the points where d1, d2 are tangent to ∂H
2−, and let I1, I2 be the connected1399

components of ∂H
2− \ {x1, x2}. We select the index so that I1 is the boundary of the de1400

Sitter component T1 of U containing p. Now let q be a point in T1 so that the past of q in1401

T1 has a closure in U containing a fundamental domain J for the action of γ0 on I1. Then1402

there are two time-like geodesic rays starting from q and accumulating at points in I11403

which are extremities of a subinterval containing J . These rays project in �m onto two1404

time-like geodesic rays l1 and l2 starting from the projection q̄ of q. These rays admit a1405

first intersection point q̄ ′ in the past of q̄ . Let l ′1, l ′2 be the subintervalls in respectively1406

l1, l2 with extremities q̄ , q̄ ′: their union is a circle disconnecting the singular point p̄1407

from the boundary of the de Sitter component. Remove the component of � \ (l ′1 ∪ l ′2)1408

adjacent to this boundary. If q̄ ′ is well-chosen, l ′1 and l ′2 have the same proper time. Then1409

we can glue one to the other by a hyperbolic isometry. The resulting spacetime is as1410

required an interaction between a BTZ black hole corresponding to p̄ with a white hole1411

corresponding to q̄ ′ - it contains also a tachyon of positive mass corresponding to q̄ .1412

6. Global Hyperbolicity1413

In previous sections, we considered local properties of AdS manifolds with particles.1414

We already observed in Sect. 3.6 that the usual notions of causality (causal curves,1415

future, past, time functions...) available for regular Lorentzian manifolds still hold. In1416

this section, we consider the global character of causal properties of AdS manifolds with1417

particles. The main point presented here is that, as long as no interaction appears, global1418

hyperbolicity is still a meaningful notion for singular AdS spacetimes. This notion will1419

be necessary in Sect. 7, as well as in the continuation of this paper [BBS10] (see also1420

the final part of [BBS09]).1421

The content of this section is presented in the AdS setting. We believe that most1422

results could be extended to Minkowski or de Sitter singular manifolds.1423

In all this section M denotes a singular AdS manifold admitting as singularities only1424

massive particles and no interaction. The regular part of M is denoted by M∗. Since we1425

will consider other Lorentzian metrics on M , we need a denomination for the singular1426

AdS metric : we denote it g0.1427

6.1. Local coordinates near a singular line. Causality notions only depend on the con-1428

formal class of the metric, and AdS is conformally flat. Hence, AdS spacetimes and flat1429

spacetimes share the same local causal properties. Every regular AdS spacetime admits1430

an atlas for which local coordinates have the form (z, t), where z describes the unit disk1431

D in the complex plane, t the interval ]−1, 1[ and such that the AdS metric is conformal1432

to:1433

−dt2 + |dz|2 .1434

For the singular case considered here, any point x lying on a singular line l (a mas-1435

sive particle of mass m), the same expression holds, but we have to remove a wedge1436
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{2απ < Arg(z) < 2π} where α = 1 − m is positive, and to glue the two sides of this1437

wedge. Consider the map z → ζ = z1/α: it sends the disk D with a wedge removed onto1438

the entire disk, and is compatible with the glueing of the sides of the wedge. Hence, a1439

convenient local coordinate system near x is (ζ, t) where (ζ, t) still lies in D×] − 1, 1[.1440

The singular AdS metric is then, in these coordinates, conformal to1441

(1 − m)2 |dζ |2
|ζ |2m − dt2 .1442

In these coordinates, future oriented causal curves can be parametrized by the time1443

coordinate t , and satisfies1444

∣

∣ζ ′(t)
∣

∣

|ζ |m ≤ 1

1 − m
.1445

Observe that all these local coordinates define a differentiable atlas on the topological1446

manifold M for which the AdS metric on the regular part is smooth.1447

6.2. Achronal surfaces. Usual definitions in regular Lorentzian manifolds still apply to1448

the singular AdS spacetime M :1449

Definition 6.1. A subset S of M is achronal (resp. acausal) if there is no non-trivial1450

time-like (resp. causal) curve joining two points in S. It is only locally achronal (resp.1451

locally acausal) if every point in S admits a neighborhood U such that the intersection1452

U ∩ S is achronal (resp. acausal) inside U.1453

Typical examples of locally acausal subsets are space-like surfaces, but the defini-1454

tion above also includes non-differentiable “space-like” surfaces, with only Lipschitz1455

regularity. Lipschitz space-like surfaces provide actually the general case if one adds the1456

edgeless assumption :1457

Definition 6.2. A locally achronal subset S is edgeless if every point x in S admits a1458

neighborhood U such that every causal curve in U joining one point of the past of x1459

(inside U) to a point in the future (in U) of x intersects S.1460

In the regular case, closed edgeless locally achronal subsets are embedded locally1461

Lipschitz surfaces. More precisely, in the coordinates (z, t) defined in Sect. 6.1, they are1462

graphs of 1-Lipschitz maps defined on D.1463

This property still holds in M , except the locally Lipschitz property which is not valid1464

anymore at singular points, but only a weaker weighted version holds: closed edgeless1465

acausal subsets containing x corresponds to Hölder functions f : D →] − 1, 1[ differ-1466

entiable almost everywhere and satisfying:1467

‖dζ f ‖ <
|ζ |−m

1 − m
.1468

Go back to the coordinate system (z, t). The acausal subset is then the graph of a 1-Lips-1469

chitz map ϕ over the disk minus the wedge. Moreover, the values of ϕ on the boundary1470

of the wedge must coincide since they have to be sent one to the other by the rotation1471

performing the glueing. Hence, for every r < 1:1472

ϕ(r) = ϕ(rei2απ ) .1473
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We can extend ϕ over the wedge by defining ϕ(reiθ ) = ϕ(r) for 2απ ≤ θ ≤ 2π . This1474

extension over the entire D \ {0} is then clearly 1-Lipschitz. It therefore extends at 0.1475

We have just proved:1476

Lemma 6.3. The closure of any closed edgeless achronal subset of M∗ is a closed edge-1477

less achronal subset of M.1478

Definition 6.4. A space-like surface S in M is a closed edgeless locally acausal subset1479

whose intersection with the regular part M∗ is a smooth embedded space-like surface.1480

6.3. Time functions. As in the regular case, we can define time functions as maps T :1481

M → R which are strictly increasing along any future oriented causal curve. For non-1482

singular spacetimes the existence is related to stable causality :1483

Definition 6.5. Let g, g′ be two Lorentzian metrics on the same manifold X. Then, g′
1484

dominates g if every causal tangent vector for g is time-like for g′. We denote this relation1485

by g ≺ g′.1486

Definition 6.6. A Lorentzian metric g is stably causal if there is a metric g′ such that1487

g ≺ g′, and such that (X, g′) is chronological, i.e. admits no periodic time-like curve.1488

Theorem 6.7 (See [BEE96]). A Lorentzian manifold (M, g) admits a time function if1489

and only if it is stably causal. Moreover, when a time function exists, then there is a1490

smooth time function.1491

Remark 6.8. In Sect. 6.1 we defined some differentiable atlas on the manifold M . For this1492

differentiable structure, the null cones of g0 degenerate along singular lines to half-lines1493

tangent to the “singular” line (which is perfectly smooth for the selected differentiable1494

atlas). Obviously, we can extend the definition of domination to the more general case1495

g0 ≺ g, where g0 is our singular metric and g a smooth regular metric. Therefore, we1496

can define the stable causality in this context: g0 is stably causal if there is a smooth1497

Lorentzian metric g′ which is chronological and such that g0 ≺ g′. Theorem 6.7 is still1498

valid in this more general context. Indeed, there is a smooth Lorentzian metric g such1499

that g0 ≺ g ≺ g′, which is stably causal since g is dominated by the achronal metric g′.1500

Hence there is a time function T for the metric g, which is still a time function for g01501

since g0 ≺ g: causal curves for g0 are causal curves for g.1502

Lemma 6.9. The singular metric g0 is stably causal if and only if its restriction to the1503

regular part M∗ is stably causal. Therefore, (M, g0) admits a smooth time function if1504

and only if (M∗, g0) admits a time function.1505

Proof. The fact that (M∗, g0) is stably causal as soon as (M, g0) is stably causal is1506

obvious. Let us assume that (M∗, g0) is stably causal: let g′ be a smooth chronological1507

Lorentzian metric on M∗ dominating g0. On the other hand, using the local models1508

around singular lines, it is easy to construct a chronological Lorentzian metric g′′ on1509

a tubular neighborhood U of the singular locus of g0 (the fact that g′ is chronological1510

implies that the singular lines are not periodic). Actually, by reducing the tubular neigh-1511

borhood U and modyfing g′′ therein, one can assume that g′ dominates g′′ on U . Let1512

U ′ be a smaller tubular neighborhood of the singular locus such that U
′ ⊂ U , and let1513

a, b be a partition of unity subordinate to U , M \ U ′. Then g1 = ag′′ + bg′ is a smooth1514

Lorentzian metric dominating g0. Moreover, we also have g1 ≺ g′ on M∗. Hence any1515

time-like curve for g1 can be slightly perturbed to a time-like curve for g′ avoiding the1516

singular lines. It follows that (M, g0) is stably causal. ��1517
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6.4. Cauchy surfaces.1518

Definition 6.10. A space-like surface S is a Cauchy surface if it is acausal and intersects1519

every inextendible causal curve in M.1520

Since a Cauchy surface is acausal, its future I +(S) and its past I −(S) are disjoint.1521

Remark 6.11. The regular part of a Cauchy surface in M is not a Cauchy surface in1522

the regular part M∗, since causal curves can exit the regular region through a time-like1523

singularity.1524

Definition 6.12. A singular AdS spacetime is globally hyperbolic if it admits a Cauchy1525

surface.1526

Remark 6.13. We defined Cauchy surfaces as smooth objects for further requirements in1527

this paper, but this definition can be generalized for non-smooth locally achronal closed1528

subsets. This more general definition leads to the same notion of globally hyperbolic1529

spacetimes, i.e. singular spacetimes admitting a non-smooth Cauchy surface also admits1530

a smooth one.1531

Proposition 6.14. Let M be a singular AdS spacetime without interaction and with sin-1532

gular set reduced to massive particles. Assume that M is globally hyperbolic. Then M1533

admits a time function T : M → R such that every level T −1(t) is a Cauchy surface.1534

Proof. This is a well-known theorem by Geroch in the regular case, even for general1535

globally hyperbolic spacetimes without compact Cauchy surfaces ([Ger70]). But, the1536

singular version does not follow immediately by applying this regular version to M∗
1537

(see Remark 6.11).1538

Let l be an inextendible causal curve in M . It intersects the Cauchy surface S, and1539

since S is achronal, l cannot be periodic. Therefore, M admits no periodic causal curve,1540

i.e. is acausal.1541

Let U be a small tubular neighborhood of S in M , such that the boundary ∂U is the1542

union of two space-like hypersurfaces S−, S+ with S− ⊂ I −(S), S+ ⊂ I +(S), and such1543

that every inextendible future oriented causal curve in U starts from S−, intersects S1544

and then hits S+. Any causal curve starting from S− leaves immediately S−, crosses S1545

at some point x ′, and then cannot cross S anymore. In particular, it cannot go back in1546

the past of S since S is acausal, and thus, does not reach S− anymore. Therefore, S− is1547

acausal. Similarly, S+ is acausal. It follows that S± are both Cauchy surfaces for (M, g0).1548

For every x in I +(S−) and every past oriented g0-causal tangent vector v, the past1549

oriented geodesic tangent to (x, v) intersects S. The same property holds for tangent1550

vector (x, v′) nearby. It follows that there exists on I +(S−) a smooth Lorentzian metric1551

g′
1 such that g0 ≺ g′

1 and such that every inextendible past oriented g′
1-causal curve1552

attains S. Furthermore, we can select g′
1 such that S is g′

1-space-like, and such that every1553

future oriented g′
1-causal vector tangent at a point of S points in the g0-future of S. It1554

follows that future oriented g′
1-causal curves crossing S cannot come back to S: S is1555

acausal, not only for g0, but also for g′
1.1556

We can also define g′
2 in the past of S+ so that g0 ≺ g′

2, every inextendible future1557

oriented g′
2-causal curve attains S, and such that S is g′

2-acausal. We can now interpolate1558

in the common region I +(S−) ∩ I −(S+), getting a Lorentzian metric g′ on the entire M1559

such that g0 ≺ g′ ≺ g′
1 on I +(S−), and g0 ≺ g′ ≺ g′

2 on I −(S+). Observe that even if1560

it is not totally obvious that the metrics g′
i can be selected continuous, we have enough1561

room to pick such a metric g′ in a continuous way.1562
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Let l be a future oriented g′-causal curve starting from a point in S. Since g′ ≺ g′
1,1563

this curve is also g′
1-causal as long as it remains inside I +(S−). But since S is acausal1564

for g′
1, it implies that l cannot cross S anymore: hence l lies entirely in I +(S). It follows1565

that S is acausal for g′.1566

By construction of g′
1, every past-oriented g′

1-causal curve starting from a point1567

inside I +(S) must intersect S. Since g′ ≺ g′
1 the same property holds for g′-causal1568

curves. Using g′
2 for points in I +(S−), we get that every inextendible g′-causal curve1569

intersects S. Hence, (M, g′) is globally hyperbolic. According to Geroch’s Theorem in1570

the regular case, there is a time function T : M → R whose levels are Cauchy sur-1571

faces. The proposition follows, since g0-causal curves are g′-causal curves, implying1572

that g′-Cauchy surfaces are g0-Cauchy surfaces and that g′-time functions are g0-time1573

functions. ��1574

Corollary 6.15. If (M, g0) is globally hyperbolic, there is a decomposition M ≈ S ×R,1575

where every level S×{∗} is a Cauchy surface, and very vertical line {∗}×R is a singular1576

line or a time-like line.1577

Proof. Let T : M → R be the time function provided by Proposition 6.14. Let X be1578

minus the gradient (for g0) of T : it is a future oriented time-like vector field on M∗.1579

Consider also a future oriented time-like vector field Y on a tubular neighborhood U of1580

the singular locus: using a partition of unity as in the proof of Lemma 6.9, we can con-1581

struct a smooth time-like vector field Z = aY + bX on M tangent to the singular lines.1582

The orbits of the flow generated by Z are time-like curves. The global hyperbolicity of1583

(M, g0) ensures that each of these orbits intersect every Cauchy surface, in particular,1584

the level sets of T . In other words, for every x in M the Z -orbit of x intersects S at a1585

point p(x). Then the map F : M → S × R defined by F(x) = (p(x), T (x)) is the1586

desired diffeomorphism between M and S × R. ��1587

6.5. Maximal globally hyperbolic extensions. From now we assume that M is globally1588

hyperbolic, admitting a compact Cauchy surface S. In this section, we prove the follow-1589

ing facts, well-known in the case of regular globally hyperbolic solutions to the Einstein1590

equation ([Ger70]): there exists a maximal extension, which is unique up to isometry.1591

Definition 6.16. An isometric embedding i : (M, S) → (M ′, S′) is a Cauchy embedding1592

if S′ = i(S) is a Cauchy surface of M ′.1593

Remark 6.17. If i : M → M ′ is a Cauchy embedding then the image i(S′) of any Cauchy1594

surface S′ of M is also a Cauchy surface in M ′. Indeed, for every inextendible causal1595

curve l in M ′, every connected component of the preimage i−1(l) is an inextendible1596

causal curve in M , and thus intersects S. Since l intersects i(S) in exactly one point,1597

i−1(l) is connected. It follows that the intersection l ∩ i(S′) is non-empty and reduced1598

to a single point: i(S′) is a Cauchy surface.1599

Therefore, we can define Cauchy embeddings without reference to the selected1600

Cauchy surface S. However, the natural category is the category of marked globally1601

hyperbolic spacetimes, i.e. pairs (M, S).1602

Lemma 6.18. Let i1 : (M, S) → (M ′, S′), i2 : (M, S) → (M ′, S′) be two Cauchy1603

embeddings into the same marked globally hyperbolic singular AdS spacetime (M ′, S′).1604

Assume that i1 and i2 coincide on S. Then, they coincide on the entire M.1605
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Proof. If x ′, y′ are points in M ′ sufficiently near to S′, say, in the future of S′, then they1606

are equal if and only if the intersections I −(x ′)∩ S′ and I −(y′)∩ S′ are equal. Apply this1607

observation to i1(x), i2(x) for x near S: we obtain that i1, i2 coincide in a neighborhood1608

of S.1609

Let now x be any point in M . Since there is only a finite number of singular lines in1610

M , there is a time-like geodesic segment [y, x], where y lies in S, and such that [y, x[1611

is contained in M∗ (x may be singular). Then x is the image by the exponential map of1612

some ξ in Ty M . Then i1(x), i2(x) are the image by the exponential map of respectively1613

dyi1(ξ), dyi2(ξ). But these tangent vectors are equal, since i1 = i2 near S. ��1614

Lemma 6.19. Let i : M → M ′ be a Cauchy embedding into a singular AdS spacetime.1615

Then, the image of i is causally convex, i.e. any causal curve in M ′ admitting extremities1616

in i(M) lies inside i(M).1617

Proof. Let l be a causal segment in M ′ with extremities in i(M). We extend it as an1618

inextendible causal curve l̂. Let l ′ be a connected component of l̂ ∩ i(M): it is an in-1619

extendible causal curve inside i(M). Thus, its intersection with i(S) is non-empty. But1620

l̂ ∩ i(S) contains at most one point: it follows that l̂ ∩ i(M) admits only one connected1621

component, which contains l. ��1622

Corollary 6.20. The boundary of the image of a Cauchy embedding i : M → M ′ is the1623

union of two closed edgeless achronal subsets S+, S− of M ′, and i(M) is the intersection1624

between the past of S+ and the future of S−.1625

Each of S+, S− might be empty, and is not necessarily connected.1626

Proof. This is a general property of causally convex open subsets: S+ (resp. S−) is the1627

set of elements in the boundary of i(M) whose past (resp. future) intersects i(M). The1628

proof is straightforward and left to the reader. ��1629

Definition 6.21. (M, S) is maximal if every Cauchy embedding i : M → M ′ into a1630

singular AdS spacetime is onto, i.e. an isometric homeomorphism.1631

Proposition 6.22. (M, S) admits a maximal singular AdS extension, i.e. a Cauchy1632

embedding into a maximal globally hyperbolic singular AdS spacetime ( ̂M, Ŝ) with-1633

out interaction.1634

Proof. Let M be the set of Cauchy embeddings i : (M, S) → (M ′, S′). We define1635

on M the relation (i1, M1, S1) � (i2, M2, S2) if there is a Cauchy embedding i :1636

(M1, S1) → (M2, S2) such that i2 = i ◦ i1. It defines a preorder on M. Let M be the1637

space of Cauchy embeddings up to isometry, i.e. the quotient space of the equivalence1638

relation identifying (i1, M1, S1) and (i2, M2, S2) if there is an isometric homeomor-1639

phism i : (M1, S1) → (M2, S2) such that i2 = i ◦ i1. Then � induces on M a preorder1640

relation, that we still denote by �. Lemma 6.18 ensures that � is a partial order (if1641

(i1, M1, S1) � (i2, M2, S2) and (i2, M2, S2) � (i1, M1, S1), then M1 and M2 are iso-1642

metric and represent the same element of M). Now, any totally ordered subset A of M1643

admits an upper bound in A: the inverse limit of (representants of) the elements of A.1644

By the Zorn Lemma, we obtain that M contains a maximal element. Any representant1645

in M) of this maximal element is a maximal extension of (M, S). ��1646

Remark 6.23. The proof above is sketchy: for example, we did not justify the fact that1647

the inverse limit is naturally a singular AdS spacetime. This is however a straightforward1648

verification, the same as in the classical situation, and is left to the reader.1649
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Proposition 6.24. The maximal extension of (M, S) is unique up to isometry.1650

Proof. Let ( ̂M1, S1), ( ̂M2, S2) be two maximal extensions of (M, S). Consider the set of1651

globally hyperbolic singular AdS spacetimes (M ′, S′) for which there is a commutative1652

diagram as below, where arrows are Cauchy embeddings.1653

1654

Reasoning as in the previous proposition, we get that this set admits a maximal ele-1655

ment: there is a marked extension (M ′, S′) of (M, S), and Cauchy embeddings ϕi :1656

M ′ → ̂Mi which cannot be simultaneously extended.1657

Define ̂M as the union of ( ̂M1, S1) and ( ̂M2, S2), identified along their respective1658

embedded copies of (M ′, S′), through ϕ := ϕ2 ◦ ϕ−1
1 , equipped with the quotient topol-1659

ogy. The key point is to prove that ̂M is Hausdorff. Assume not: there is a point x1 in1660

̂M1, a point x2 in ̂M2, and a sequence yn in M ′ such that ϕi (yn) converges to xi , but1661

such that x1 and x2 do not represent the same element of ̂M . It means that yn does not1662

converge in M ′, and that xi is not in the image of ϕi . Let Ui be small neighborhoods in1663

̂Mi of xi .1664

Denote by S+
i , S−

i the upper and lower boundaries ofϕi (M ′) in ̂Mi (cf. Corollary 6.20).1665

Up to time reversal, we can assume that x1 lies in S+
1 : it implies that all the ϕ1(yn) lies1666

in I −(S+
1 ), and that, if U1 is small enough, U1 ∩ I −(x1) is contained in ϕ1(M ′). It is an1667

open subset, hence ϕ extends to some AdS isometry ϕ between U1 and U2 (reducing the1668

Ui if necessary). Therefore, every ϕi can be extended to isometric embeddings ϕi of a1669

spacetime M ′′ containing M ′, so that1670

ϕ2 = ϕ ◦ ϕ1.1671

We intend to prove that xi and Ui can be chosen such that Si is a Cauchy surface1672

in ϕi (M ′′) = ϕi (M ′) ∪ Ui . Consider past oriented causal curves, starting from x1, and1673

contained in S+
1 . They are partially ordered by the inclusion. According to the Zorn1674

Lemma, there is a maximal causal curve l1 satisfying all these properties. Since S+
1 is1675

disjoint from S1, and since every inextendible causal curve crosses S, the curve l1 is not1676

inextendible: it has a final endpoint y1 belonging to S+
1 (since S+

1 is closed). Therefore,1677

any past oriented causal curve starting from y1 is disjoint from S+
1 (except at the starting1678

point y1).1679

We have seen that ϕ can be extended over in a neighborhood of x1: this extension1680

maps the initial part of l1 onto a causal curve in ̂M2 starting from x2 and contained in1681

S+
2 . By compactness of l1, this extension can be performed along the entire l1, and the1682

image is a causal curve admitting a final point y2 in S+
2 . The points y1 and y2 are not1683

separated one from the other by the topology of ̂M . Replacing xi by yi , we can thus1684

assume that every past oriented causal curve starting from xi is contained in I −(S+
i ).1685

It follows that, once more reducing Ui if necessary, inextendible past oriented causal1686

curves starting from points in Ui and in the future of S+
i intersects S+

i before escaping1687
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from Ui . In other words, inextendible past oriented causal curves in Ui ∪ I −(S+
i ) are1688

also inextendible causal curves in ̂Mi , and therefore, intersect Si . As required, Si is a1689

Cauchy surface in Ui ∪ ϕi (M ′).1690

Hence, there is a Cauchy embedding of (M, S) into some globally hyperbolic space-1691

time (M ′′, S′′), and Cauchy embeddings ϕi : (M ′′, S′′) → ϕi (M ′) ∪ Ui , which are1692

related by some isometry ϕ : ϕ1(M ′) ∪ U1 → ϕ2(M ′) ∪ U2:1693

ϕ2 = ϕ ◦ ϕ1.1694

It is a contradiction with the maximality of (M ′, S′). Hence, we have proved that ̂M1695

is Hausdorff. It is a manifold, and the singular AdS metrics on ̂M1, ̂M2 induce a singular1696

AdS metric on ̂M . Observe that S1 and S2 projects in ̂M onto the same space-like surface1697

̂S. Let l be any inextendible curve in ̂M . Without loss of generality, we can assume that1698

l intersects the projection W1 of ̂M1 in ̂M . Then every connected component of l ∩ W11699

is an inextendible causal curve in W1 ≈ ̂M1. It follows that l intersects ̂S. Finally, if1700

some causal curve links two points in ̂S, then it must be contained in W1 since globally1701

hyperbolic open subsets are causally convex. It would contradict the acausality of S11702

inside ̂M1.1703

The conclusion is that ̂M is globally hyperbolic, and that ̂S is a Cauchy surface in1704

̂M . In other words, the projection of ̂Mi into ̂M is a Cauchy embedding. Since ̂Mi is a1705

maximal extension, these projections are onto. Hence ̂M1 and ̂M2 are isometric. ��1706

Remark 6.25. The uniqueness of the maximal globally hyperbolic AdS extension is no1707

longer true if we allow interactions. Indeed, in the next section we will see how, given1708

some singular AdS spacetime without interaction, to define a surgery near a point in a1709

singular line, introducing some collision or interaction at this point. The place where1710

such a surgery can be performed is arbitrary.1711

However, the uniqueness of the maximal globally hyperbolic extension holds in the1712

case of interactions, if one stipulates that no new interactions can be introduced. The1713

point is to consider the maximal extension in the future of a Cauchy surface in the future1714

of all interactions, and the maximal extension in the past of a Cauchy surface contained1715

in the past of all interactions. This point, along with other aspects of the global geom-1716

etry of moduli spaces of AdS manifolds with interacting particles, is further studied in1717

[BBS10].1718

7. Global Examples1719

The main goal of this section is to construct examples of globally hyperbolic singular1720

AdS manifolds with interacting particles, so we go beyond the local examples con-1721

structed in Sect. 2. In a similar way examples of globally hyperbolic flat or de Sitter1722

space-times with interacting particles can be also constructed.1723

Sections 7.1 and 7.2 are presented in the AdS setting, but can presumably largely be1724

extended to the Minkowski or de Sitter setting. The next two parts, however, are more1725

specifically AdS and an extension to the Minkowski or de Sitter context is less clear.1726

7.1. An explicit example. Let S be a hyperbolic surface with one cone point p of angle1727

θ . Denote by μ the corresponding singular hyperbolic metric on S.1728

Let us consider the Lorentzian metric on S × (−π/2, π/2) given by1729

h = −dt2 + cos2 t μ, (2)1730

where t is the real parameter of the interval (−π/2, π/2).1731
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We denote by M(S) the singular spacetime (S × (−π/2, π/2), h).1732

Lemma 7.1. M(S) is an Ad S spacetime with a particle corresponding to the singular1733

line {p} × (−π/2, π/2). The corresponding cone angle is θ . Level surfaces S × {t} are1734

orthogonal to the singular locus.1735

Proof. First we show that h is an Ad S metric. The computation is local, so we can1736

assume S = H
2. Thus we can identify S to a geodesic plane in Ad S3. We consider Ad S31737

as embedded in R
2,2, as mentioned in the Introduction. Let n be the normal direction to1738

S, then we can consider the normal evolution1739

F : S × (−π/2, π/2) � (x, t) �→ cos t x + sin tn ∈ Ad S3.1740

The map F is a diffeomorphism onto an open domain of Ad S3 and the pull-back of the1741

Ad S3-metric takes the form (2).1742

To prove that {p} × (−π/2, π/2) is a conical singularity of angle θ , take a geodesic1743

plane P in Pθ orthogonal to the singular locus. Notice that P has exactly one cone point1744

p0 corresponding to the intersection of P with the singular line of Pθ (here Pθ is the1745

singular model space defined in Subsect. 3.7). Since the statement is local, it is sufficient1746

to prove it for P . Notice that the normal evolution of P \ {p0} is well-defined for any1747

t ∈ (−π/2, π/2). Moreover, such evolution can be extended to a map on the whole1748

P × (−π/2, π/2) sending {p0} × (−π/2, π/2) onto the singular line. This map is a1749

diffeomorphism of P × (−π/2, π/2) with an open domain of Pθ . Since the pull-back1750

of the Ad S-metric of Pθ on (P \ {p0}) × (−π/2, π/2) takes the form (2) the statement1751

follows. ��1752

Let T be a triangle in H S2, with one vertex in the future hyperbolic region and1753

two vertices in the past hyperbolic region. Doubling T , we obtain a causally regular1754

HS-sphere � with an elliptic future singularity at p and two elliptic past singularities,1755

q1, q2.1756

Let r be the future singular ray in e(�). For a given ε > 0 let pε be the point at1757

distance ε from the interaction point. Consider the geodesic disk Dε in e(�) centered at1758

pε , orthogonal to r and with radius ε.1759

The past normal evolution nt : Dε → e(�) is well-defined for t ≤ ε. In fact, if we1760

restrict to the annulus Aε = Dε \ Dε/2, the evolution can be extended for t ≤ ε′ for1761

some ε′ > ε (Fig. 11).1762

Let us set1763

Uε = {nt (p) | p ∈ Dε, t ∈ (0, ε)},
�ε = {nt (p) | p ∈ Dε \ Dε/2, t ∈ (0, ε′)}.1764

Notice that the interaction point is in the closure of Uε . It is possible to contruct a1765

neighborhood �ε of the interaction point p0 such that1766

• Uε ∪ �ε ⊂ �ε ⊂ Uε ∪ �ε ∪ B(p0) where B(p0) is a small ball around p0;1767

• �ε admits a foliation in achronal disks (D(t))t∈(0,ε′) such that1768

(1) D(t) = nt (Dε) for t ≤ ε,1769

(2) D(t) ∩ �t = nt (Dε \ Dε/2) for t ∈ (0, ε′),1770

(3) D(t) is orthogonal to the singular locus.1771

Consider now the space M(S) as in the previous lemma. For small ε the disk Dε1772

embeds in M(S), sending pε to (p, 0).1773
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Fig. 11. Construction of a singular tube with an interaction of two particles

Let us identify Dε with its image in M(S). The normal evolution on Dε in M(S) is1774

well-defined for 0 < t < π/2 and in fact coincides with the map1775

nt (x, 0) = (x, t).1776

It follows that the map1777

F : (Dε \ Dε/2) × (0, ε′) → �ε,1778

defined by F(x, t) = nt (x) is an isometry (Fig. 11).1779

Thus if we glue (S \ Dε/2) × (0, ε′) to �ε by identifying Dε \ Dε/2 to �ε via F we1780

get a spacetime with particles1781

M̂ = (S \ Dε/2) × (0, ε′) ∪F �ε1782

that easily verifies the following statement.1783

Proposition 7.2. There exists a locally Ad S3 manifold with particles M̂ such that1784

(1) topologically, M̂ is homeomorphic to S × R,1785

(2) in M̂, two particles collide producing one particle only,1786

(3) M̂ admits a foliation by spacelike surfaces orthogonal to the singular locus.1787

We say that M̂ is obtained by a surgery on M ′ = S × (0, ε′).1788

7.2. Surgery. In this section we get a generalization of the construction explained in1789

the previous section. In particular we show how to do a surgery on a spacetime with1790

conical singularity in order to obtain a spacetime with collision more complicated than1791

that described in the previous section.1792

Lemma 7.3. Let � be a causally regular HS-sphere containing only elliptic singular-1793

ities. Suppose that the circle of photons C+ bounding the future hyperbolic part of �1794

carries an elliptic structure of angle θ . Then e(�) \ (I +(p0) ∪ I −(p0)) embeds in Pθ1795

(p0 denotes the interaction point of e(�)).1796
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Proof. Let D be the de Sitter part of �, Notice that1797

e(D) = e(�) \ (I +(p0) ∪ I −(p0)).1798

To prove that e(D) embeds in Pθ it is sufficient to prove that D is isometric to the de1799

Sitter part of the HS sphere �θ that is the link of a singular point of Pθ . Such de Sitter1800

surface is the quotient of d̃ S2 under an elliptic transformation of ˜SO(2, 1) of angle θ .1801

So the statement is equivalent to proving that the developing map1802

d : D̃ → ˜d S21803

is a diffeomorphism. Since ˜d S2 is simply connected and d is a local diffeomorphism, it1804

is sufficient to prove that d is proper.1805

As in Sect. 5, d̃ S2 can be completed by two lines of photons, say R+, R− that are1806

projectively isomorphic to ˜RP1.1807

Consider the left isotropic foliation of d̃ S2. Each leaf has an α-limit in R− and an1808

ω-limit on R+. Moreover every point of R− (resp. R+) is an α-limit (resp. ω-limit) of1809

exactly one leaf of each foliation. Thus we have a continuous projection ιL : ˜d S2 ∪ R− ∪1810

R+ → R+, obtained by sending a point x to the ω-limit of the leaf of the left foliation1811

through it. The map ιL is a proper submersion. Since D does not contain singularities,1812

we have an analogous proper submersion,1813

ι′L : D̃ ∪ C̃− ∪ C̃+ → C̃+,1814

where C̃+, C̃− are the universal covering of the circle of photons of �.1815

By the naturality of the construction, the following diagram commutes1816

D̃ ∪ C̃− ∪ C̃
d−−−−→ ˜d S2 ∪ R− ∪ R+

ι′L
⏐

⏐

�

ιL

⏐

⏐

�

C̃+
d−−−−→ R̃+.

1817

The map d|C̃+
is the developing map for the projective structure of C+. By the hypothesis,1818

we have that d|C̃+
is a homeomorphism, so it is proper.1819

Since the diagram is commutative and the fact that ιL and ι′L are both proper, one1820

easily proves that d is proper. ��1821

Remark 7.4. If � is a causally regular HS-sphere containing only elliptic singularities,1822

the map ι′L : C̃− → C̃+ induces a projective isomorphism ῑ : C− → C+.1823

Definition 7.5. Let M be a singular spacetime homeomorphic to S × R and let p ∈ M.1824

A neighborhood U of p is said to be cylindrical if1825

• U is topologically a ball;1826

• ∂±C := ∂U ∩ I ±(p) is a spacelike disk;1827

• there are two disjoint closed spacelike slices S−, S+ homeomorphic to S such that1828

S− ⊂ I −(S+) and I ±(p) ∩ S± = ∂±C.1829

Remark 7.6.1830

• If a spacelike slice through p exists then cylindrical neighborhoods form a funda-1831

mental family of neighborhoods.1832

• There is an open retract M ′ of M whose boundary is S− ∪ S+.1833
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Corollary 7.7. Let � be a HS-sphere as in Lemma 7.3. Given an Ad S spacetime M1834

homeomorphic to S × R containing a particle of angle θ , let us fix a point p on it and1835

suppose that a spacelike slice through p exists. There is a cylindrical neighborhood C1836

of p and a cylindrical neighborhood C0 of the interaction point p0 in e(�) such that1837

C \ (I +(p) ∪ I −(p)) is isometric to C0 \ (I +(p0) ∪ I −(p0)).1838

Take an open deformation retract M ′ ⊂ M with spacelike boundary such that ∂±C ⊂1839

∂ M ′. Thus let us glue M ′ \(I +(p)∪ I −(p)) and C0 by identifying C \(I +(p)∪ I −(p)) to1840

C0 ∩e(D). In this way we get a spacetime M̂ homeomorphic to S×R with an interaction1841

point modelled on e(�). We say that M̂ is obtained by a surgery on M ′.1842

The following proposition is a kind of converse to the previous construction.1843

Proposition 7.8. Let M̂ be a spacetime with conical singularities homeomorphic to1844

S × R containing only one interaction between particles. Suppose moreover that a1845

neighborhood of the interaction point is isometric to an open subset in e(�), where �1846

is a HS-surface as in Lemma 7.3. Then a subset of M̂ is obtained by a surgery on a1847

spacetime without interaction.1848

Proof. Let p0 be the interaction point. There is an HS-sphere � as in Lemma 7.3 such1849

that a neighborhood of p0 is isometric to a neighborhood of the vertex of e(�). In partic-1850

ular there is a small cylindrical neighborhood C0 around p0. According to Lemma 7.3,1851

for a suitable cylindrical neighborhood C of a singular point p in Pθ we have1852

C \ (I +(p) ∪ I −(p)) ∼= C0 \ (I +(p0) ∪ I −(p0)).1853

Taking the retract M ′ of M̂ such that ∂±C0 is in the boundary of M ′, the space-1854

time M ′ \ (I +(p0) ∪ I −(p0)) can be glued to C via the above identification. We1855

get a spacetime M with only one singular line. Clearly the surgery on M of C01856

produces M ′. ��1857

7.3. Spacetimes containing BTZ-type singularities. In this section we describe a class1858

of spacetimes containing BTZ-type singularities.1859

We use the projective model of Ad S geometry, that is the Ad S3,+. From Subsect. 2.2,1860

Ad S3,+ is a domain in RP
3 bounded by the double ruled quadric Q. Using the dou-1861

ble family of lines Ll ,Lr we identify Q to RP
1 × RP

1 so that the isometric action1862

of Isom0,+ = P SL(2, R) × P SL(2, R) on Ad S3 extends to the product action on the1863

boundary.1864

We have seen in Sect. 2.2 that gedesics of Ad S3,+ are projective segments whereas1865

geodesics planes are the intersection of Ad S3,+ with projective planes. The scalar product1866

of R
2,2 induces a duality between points and projective planes and between projective1867

lines. In particular points in Ad S3 are dual to spacelike planes and the dual of a spacelike1868

geodesic is still a spacelike geodesic. Geometrically, every timelike geodesic starting1869

from a point p ∈ Ad S3 orthogonally meets the dual plane at time π/2, and points on1870

the dual plane can be characterized by the property to be connected to p be a timelike1871

geodesic of length π/2. Analogously, the dual line of a line l is the set of points that be1872

can be connected to every point of l by a timelike geodesic of length π/2.1873

Now, consider two hyperbolic transformations γ1, γ2 ∈ P SL(2, R) with the same1874

translation length. There are exactly 2 spacelike geodesics l1, l2 in Ad S3 that are invari-1875

ant under the action of (γ1, γ2) ∈ P SL(2, R)× P SL(2, R) = Isom0,+. Namely, if x+(c)1876
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denotes the attractive fixed point of a hyperbolic transformation c ∈ P SL(2, R), l2 is1877

the line in Ad S3 joining the boundary points (x+(γ1), x+(γ2)) and (x+(γ −1
1 ), x+(γ −1

2 )).1878

On the other hand l1 is the geodesic dual to l2, the endpoints of l1 are (x+(γ1), x+(γ −1
2 ))1879

and (x+(γ −1
1 ), x+(γ2)).1880

Points of l1 are fixed by (γ1, γ2) whereas it acts by pure translation on l2. The union1881

of the timelike segments with the past end-point on l2 and the future end-point on l1 is a1882

domain �0 in Ad S3,+ invariant under (γ1, γ2). The action of (γ1, γ2) on �0 is proper and1883

free and the quotient M0(γ1, γ2) = �0/(γ1, γ2) is a spacetime homeomorphic to S1×R
2.1884

There exists a spacetime with singularities M̂0(γ1, γ2) such that M0(γ1, γ2) is iso-1885

metric to the regular part of M̂0(γ1, γ2) and it contains a future BTZ-type singularity.1886

Define1887

M̂0(γ1, γ2) = (�0 ∪ l1)/(γ1, γ2).1888

To show that l1 is a future BTZ-type singularity, let us consider an alternative descrip-1889

tion of M̂0(γ1, γ2). Notice that a fundamental domain in �0 ∪l1 for the action of (γ1, γ2)1890

can be constructed as follows. Take on l2 a point z0 and put z1 = (γ1, γ2)z0. Then con-1891

sider the domain P that is the union of a timelike geodesic joining a point on the segment1892

[z0, z1] ⊂ l2 to a point on l1. P is clearly a fundamental domain for the action with two1893

timelike faces. M̂0(γ1, γ2) is obtained by gluing the faces of P .1894

We now generalize the above constructions as follows. Let us fix a surface S with1895

some boundary component and negative Euler characteristic. Consider on S two hyper-1896

bolic metrics μl and μr with geodesic boundary such that each boundary component1897

has the same length with respect to those metrics.1898

Let hl , hr : π1(S) → P SL(2, R) be the corresponding holonomy representations.1899

The pair (hl , hr ) : π1(S) → P SL(2, R) × P SL(2, R) induces an isometric action of1900

π1(S) on Ad S3.1901

In [Bar08a,Bar08b,BKS06] it is proved that there exists a convex domain � in AdS3,+1902

invariant under the action of π1(S) and the quotient M = �/π1(�) is a strongly causal1903

manifold homeomorphic to S × R. For the convenience of the reader we sketch the1904

construction of � referring to [Bar08a,Bar08b] for details.1905

The domain � can be defined as follows. First consider the limit set � defined as the1906

closure of the set of pairs (x+(hl(γ )), x+(hr (γ ))) for γ ∈ π1(S). � is a π1(S)-invariant1907

subset of ∂ Ad S3,+ and it turns out that there exists a spacelike plane P disjoint from �.1908

So we can consider the convex hull K of � in the affine chart RP
3 \ P .1909

K is a convex subset contained in Ad S3,+. For any peripheral loop γ , the spacelike1910

geodesic cγ joining (x+(hl(γ
−1)), x+(hr (γ

−1))) to (x+(hl(γ )), x+(hr (γ ))) is contained1911

in ∂K and � ∪ ⋃

cγ disconnects ∂K into components called the future boundary, ∂+ K ,1912

and the past boundary, ∂−K .1913

One then defines � as the set of points whose dual plane is disjoint from K . We have1914

(1) the interior of K is contained in �.1915

(2) ∂� is the set of points whose dual plane is a support plane for K .1916

(3) ∂� has two components: the past and the future boundary. Points dual to support1917

planes of ∂−K are contained in the future boundary of �, whereas points dual to1918

support planes of ∂+ K are contained in the past boundary of �.1919

(4) Let A be the set of triples (x, v, t), where t ∈ [0, π/2], x ∈ ∂−K and v ∈ ∂+� is a1920

point dual to some support plane of K at x . We consider the normal evolution map1921

� : A → Ad S3,+, where�(x, v, t) is the point on the geodesic segment joining x to1922

v at distance t from x . In [BB09b] the map � is shown to be injective (Figs. 12, 13).1923
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Fig. 12. The region P is bounded by the dotted triangles, whereas M0(γ1, γ2) is obtained by gluing the faces
of P

Proposition 7.9. There exists a manifold with singularities M̂ such that1924

(1) The regular part of M̂ is M.1925

(2) There is a future BTZ-type singularity and a past BTZ-type singularity for each1926

boundary component of M.1927
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Fig. 13. The segment r(c) projects to a BTZ-type singularity for M

Proof. Let c ∈ π1(S) be a loop representing a boundary component of S and let γ1 =1928

hl(c), γ2 = hr (c).1929

By hypothesis, the translation lengths of γ1 and γ2 are equal, so, as in the previous1930

example, there are two invariant geodesics l1 and l2. Moreover the geodesic l2 is con-1931

tained in � and is in the boundary of the convex core K of �. By [BKS06,BB09a], there1932

exists a face F of the past boundary of K that contains l2. The dual point of such a face,1933
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say p, lies in l1. Moreover a component of l1 \ {p} contains points dual to some support1934

planes of the convex core containing l2. Thus there is a ray r = r(c) in l1 with vertex at1935

p contained in ∂+� (and similarly there is a ray r− = r−(c) contained in l1 ∩ ∂−�).1936

Now let U (c) be the union of timelike segments in � with past end-point in l2 and1937

future end-point in r(c). Clearly U (c) ⊂ �(γ1, γ2). The stabilizer of U (c) in π1(S) is1938

the group generated by (γ1, γ2). Moreover we have1939

• for some a ∈ π1(S) we have a · U (c) = U (aca−1),1940

• if d is another peripheral loop, U (c) ∩ U (d) = ∅.1941

(The last property is a consequence of the fact that the normal evolution of ∂−K is1942

injective – see property (4) before Proposition 7.9.)1943

So if we put1944

M̂ = (� ∪
⋃

r(c) ∪
⋃

r−(c))/π1(S),1945

then a neighborhood of r(c) in M̂ is isometric to a neighborhood of l1 in M(γ1, γ2), and1946

is thus a BTZ-type singularity (and analogously r−(c) is a white hole singularity). ��1947

7.4. Surgery on spacetimes containing BTZ-type singularities. Now we illustrate how1948

to get spacetimes ∼= S × R containing two particles that collide producing a BTZ-type1949

singularity. Such examples are obtained by a surgery operation similar to that imple-1950

mented in Sect. 7.2. The main difference with that case is that the boundary of these1951

spacetimes is not spacelike.1952

Let M be a spacetime ∼= S × R containing a BTZ-type singularity l of mass m and1953

fix a point p ∈ l. Let us consider a HS-surface � containing a BTZ-type singularity p01954

of mass m and two elliptic singularities q1, q2. A small disk �0 around p0 is isomorphic1955

to a small disk � in the link of the point p ∈ l. (As in the previous section, one can1956

construct such a surface by doubling a triangle in H S2 with one vertex in the de Sitter1957

region and two vertices in the past hyperbolic region.)1958

Let B be a ball around p and B� be the intersection of B with the union of segments1959

starting from p with velocity in �. Clearly B� embeds in e(�), moreover there exists a1960

small disk �0 around the vertex of e(�) such that e(�0) ∩ B0 is isometric to the image1961

of B� in B0.1962

Now �′ = ∂ B \ B� is a disk in M . So there exists a topological surface S0 in M1963

such that1964

• S0 contains �′;1965

• S0 ∩ B = ∅;1966

• M \ S0 is the union of two copies of S × R.1967

Notice that we do not require S0 to be spacelike.1968

Let M1 be the component of M \ S0 that contains B. Consider the spacetime M̂1969

obtained by gluing M1 \ (B \ B�) to B0, identifying B� to its image in B0. Clearly M̂1970

contains two particles that collide giving a BH singularity and topologically M̂ ∼= S×R.1971
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