Quantum walks of correlated particles offer the possibility to study
large-scale quantum interference, simulate biological, chemical and physical
systems, and a route to universal quantum computation. Here we demonstrate
quantum walks of two identical photons in an array of 21 continuously
evanescently-coupled waveguides in a SiOxNy chip. We observe quantum
correlations, violating a classical limit by 76 standard deviations, and find
that they depend critically on the input state of the quantum walk. These
results open the way to a powerful approach to quantum walks using correlated
particles to encode information in an exponentially larger state space