433 research outputs found

    Resumption of mass accretion in RS Oph

    Get PDF
    The latest outburst of the recurrent nova RS Oph occurred in 2006 February. Photometric data presented here show evidence of the resumption of optical flickering, indicating re-establishment of accretion by day 241 of the outburst. Magnitude variations of up to 0.32 mag in V band and 0.14 mag in B band on time-scales of 600–7000 s are detected. Over the two-week observational period, we also detect a 0.5 mag decline in the mean brightness, from V≈ 11.4 to 11.9, and record B≈ 12.9 mag. Limits on the mass accretion rate of [inline image] are calculated, which span the range of accretion rates modelled for direct wind accretion and Roche lobe overflow mechanisms. The current accretion rates make it difficult for thermonuclear runaway models to explain the observed recurrence interval, and this implies average accretion rates are typically higher than seen immediately post-outburst

    Experiment K-6-01. Distribution and biochemistry of mineral and matrix in the femurs of rats

    Get PDF
    Previous analyses of the composition of mineral and matrix in the bone of young rats following space flight has revealed deficits in calcium, phosphorus, and osteocalcin, a non-collagenous protein, without an associated decrease in collagen. To characterize the location and nature of this mineralization defect in a weight bearing long bone, the femur, researchers attempted to relate the spatial distribution of mineral in situ in the proximal, central and distal thirds of the femoral diaphysis to the biochemical composition of bone from the same area. Biochemical analyses revealed lower concentrations of calcium, phosphorus and osteocalcin but not collagen only in the central third of the diaphysis of the flight animals (F) compared to synchronous controls (S). Collagen concentration was reduced only in the proximal third of the diaphysis, where all 3 crosslinks, expressed as nM/mol collagen were higher in F than S. A new technique, x ray microtomography, with a resolution of 26 microns, was used to obtain semi-quantitative data on mineral distribution in reconstructed sections of wet whole bone. To improve the resolution of the mineral density distribution, images of the surfaces of cut sections were analyzed by backscattered electrons in a scanning electron microscope (BSE). There was good agreement between the results of the two stereochemical techniques which revealed distinct patterns of mineralization in transverse and longitudinal directions of the diaphysis. The novel methodology developed for this flight experiment shows considerable promise in elucidating the biochemical nature of what appear to be regional alterations in the mineralization of long bones of animals exposed to spaceflight

    Plasmablast and plasma cell production and distribution in trout immune tissues

    Get PDF
    These studies describe the in vitro and ex vivo generation of plasmablasts and plasma cells in trout (Oncorhynchus mykiss) peripheral blood and splenic and anterior kidney tissues. Cells were derived either from naive trout and cultured with the polyclonal activator, Escherichia coli LPS, or from trout that had been immunized with trinitrophenyl-keyhole limpet hemocyanin. Hydroxyurea was used to resolve populations of replicating (plasmablast) and nonreplicating (plasma cell) Ab-secreting cells (ASC). Complete inhibition of Ig secretion was only observed within the PBL. Both anterior kidney and splenic lymphocytes possessed a subset of ASCs that were hydroxyurea resistant. Thus, in vitro production of plasma cells appears to be restricted to the latter two tissues, whereas peripheral blood is exclusively restricted to the production of plasmablasts. After immunization with trinitrophenyl-keyhole limpet hemocyanin, specific ASC could be isolated from all immune organs; however, the anterior kidney contained 98% of all ASC. Late in the response (\u3e 10 wk), anterior kidney ASC secreted specific Ab for at least 15 days in culture, indicating that they were long-lived plasma cells. Cells from spleen and peripheral blood lost all capacity to secrete specific Ab in the absence of Ag. Late in the Ab response, high serum titer levels are solely the result of Ig secretion from anterior kidney plasma cells

    Probing the BLR in AGNs using time variability of associated absorption line

    Full text link
    It is know that most of the clouds producing associated absorption in the spectra of AGNs and quasars do not completely cover the background source (continuum + broad emission line region, BLR). We note that the covering factor derived for the absorption is the fraction of photons occulted by the absorbing clouds, and is not necessarily the same as the fractional area covered. We show that the variability in absorption lines can be produced by the changes in the covering factor caused by the variation in the continuum and the finite light travel time across the BLR. We discuss how such a variability can be distinguished from the variability caused by other effects and how one can use the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ

    Complex X-ray Absorption and the Fe Kalpha Profile in NGC 3516

    Full text link
    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and Nov. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of ~1100 km/s has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (~2.5 x 10E23 cm^-2) of highly ionized gas with a covering fraction ~50%. This low covering fraction suggests that the absorber lies within a few lt-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the Nov dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.Comment: 33 pages, 9 figures, accepted for publication in Ap

    Intrinsic Absorption Lines in Seyfert 1 Galaxies. I. Ultraviolet Spectra from the Hubble Space Telescope

    Full text link
    We present a study of the intrinsic absorption lines in the ultraviolet spectra of Seyfert 1 galaxies. We find that the fraction of Seyfert 1 galaxies that show absorption associated with their active nuclei is more than one-half (10/17), which is much higher than previous estimates (3 - 10%) . There is a one-to-one correspondence between Seyferts that show intrinsic UV absorption and X-ray ``warm absorbers''. The intrinsic UV absorption is generally characterized by high ionization: C IV and N V are seen in all 10 Seyferts with detected absorption (in addition to Ly-alpha), whereas Si IV is present in only four of these Seyferts, and Mg II absorption is only detected in NGC 4151. The absorption lines are blueshifted (or in a few cases at rest) with respect to the narrow emission lines, indicating that the absorbing gas is undergoing net radial outflow. At high resolution, the absorption often splits into distinct kinematic components that show a wide range in widths (20 - 400 km/s FWHM), indicating macroscopic motions (e.g., radial velocity subcomponents or turbulence) within a component. The strong absorption components have cores that are much deeper than the continuum flux levels, indicating that the regions responsible for these components lie completely outside of the broad emission-line regions. The covering factor of the absorbing gas in the line of sight, relative to the total underlying emission, is C > 0.86, on average. The global covering factor, which is the fraction of emission intercepted by the absorber averaged over all lines of sight, is C > 0.5.Comment: 56 pages, Latex, includes 4 figures (encapsulated postscript), Fig. 1 has 2 parts and Fig. 2 has 3 parts, to appear in the Astrophysical Journa

    Variable UV Absorption in the Seyfert 1.5 Galaxy NGC 3516: The Case for Associated UV and X-ray Absorption

    Full text link
    We present observations of the UV absorption lines in the Seyfert 1 galaxy NGC 3516, obtained at a resolution of λ\lambda/Δλ\Delta\lambda ≈\approx 40,000 with the Space Telescope Imaging Spectrograph (STIS) on 2000 October 1. The UV continuum was ∌\sim4 times lower than that observed during 1995 with the Goddard High Resolution Spectrograph (GHRS), and the X-ray flux from a contemporaneous {\it Chandra X-ray Observatory (CXO)} observation was a factor of ∌\sim8 below that observed with {\it ASCA}. The STIS spectra show kinematic components of absorption in Lyα\alpha, C IV, and N V at radial velocities of -376, -183, and -36 km s−1^{-1} (components 1, 2, and 3+4, respectively), which were detected in the earlier GHRS spectra; the last of these is a blend of two GHRS components that have increased greatly in column density. Four additional absorption components have appeared in the STIS spectra at radial velocities of -692, -837, -994, and -1372 km s−1^{-1} (components 5 through 8); these may also have been present in earlier low-flux states observed by the {\it International Ultraviolet Explorer (IUE)}. Based on photoionization models, we suggest that the components are arranged in increasing radial distance in the order, 3+4, 2, 1, followed by components 5 -- 8. We have achieved an acceptable fit to the X-ray data using the combined X-ray opacity of the UV components 1, 2 and 3+4. By increasing the UV and X-ray fluxes of these models to match the previous high states, we are able to match the GHRS C IV column densities, absence of detectable C IV absorption in components 5 through 8, and the 1994 {\it ASCA} spectrum. We conclude that variability of the UV and X-ray absorption in NGC 3516 is primarily due to changes in the ionizing flux.Comment: 7 figures (note that Fig6 is not referenced in the .Tex file and must be printed separately). There are 6 tables in the .tex file and an additional 8 tables included as separate .ps files. Accepted for Publication in the Astrophysical Journa

    Dynamics of Warm-Absorbing Gas in Seyfert Galaxies: NGC 5548

    Get PDF
    A hydromagnetic (MHD) wind from a clumpy molecular accretion disk is invoked to explain observations of warm absorbing (WA) gas in UVX from Sy galaxies. This paper focuses on two issues: (1) compatibility of kinematics and dynamics of MHD wind with the observed properties of WAs; and (2) relationship between the UVX absorptions. We provide an in-depth comparison between the MHD model and the Sy 1 galaxy NGC 5548, which at high spectral resolution exhibits a number of discrete UV absorption components. We find that: (1) the total column densities of Ovii, Oviii and H, are reproduced by constraining the UV ion column densities of Civ and Nv in each component to lie within a factor of 2 of their observed values and optimizing over the possible sets of component ionization states and Civ column densities; (2) the WA exists in the outer part of the wind and is not a continuation of the flow in the BLR; and (3) the WA extends in radial and polar directions and is ionization-stratified. X-ray absorption is found to be heavily biased towards smaller r, and UV absorption originates at larger distances from the central continuum source. We show that the discrete absorption components along the line-of-sight are intrinsically clumpy. Density differences between kinematic components result in a range of ionization and recombination timescales. We further test the applicability of the MHD wind to WAs in general, by constructing a quasi-continuous flow model, and extending it to arbitrary aspect angles. We estimate the fraction of Sy 1s having detectable WAs with larger Ovii column density than Oviii, and the range of total H column densities. We also find that the ratio of Ovii to Oviii optical depths can serve as a new diagnostic of AGN aspect angle.Comment: Latex, 8 postscript figures. Astrophysical Journal, 536, June 10, in pres

    An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zw 1

    Get PDF
    We present an empirical template spectrum suitable for fitting/subtracting and studying the FeII and FeIII line emission in the restframe UV spectra of active galatic nuclei (AGNs), the first empirical UV iron template to cover the full 1250 - 3090 A range. Iron emission is often a severe contaminant in optical--UV spectra of AGNs. Its presence complicates and limits the accuracy of measurements of both strong and weak emission lines and the continuum emission, affecting studies of line and continuum interrelations, the ionization structure, and elemental abundances in AGNs. Despite the wealth of work on modeling the AGN FeII emission and the need to account for it in observed AGN spectra, there is no UV template electronically available to aid this process. The iron template we present is based on HST spectra of the Narrow Line Seyfert 1, IZw1. Its intrinsic narrow lines (~900 km/s) and rich iron spectrum make the template particularly suitable for use with most AGN spectra. The iron emission spectrum and the line identifications and measurements are presented and compared with the work of Laor et al. We illustrate the application of the derived FeII and FeIII templates by fitting and subtracting the iron emission from UV spectra of four high-z quasars and of the nearby quasar, 3C273. We briefly discuss the small discrepancies between this observed iron emission and the UV template, and compare the template with previously published ones. We discuss the advantages and limitations of the templates and of the template fitting method. We conclude that the templates work sufficiently well to be a valuable and important tool for eliminating and studying the iron emission in AGNs, at least until accurate theoretical iron emission models are developed. (Abridged)Comment: 73 pages including 7 figures, 6 tables. To appear in ApJS. Preprint is also available at http://www.astronomy.ohio-state.edu/~vester/IronEmission

    STIS Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers

    Get PDF
    We have examined the physical conditions in intrinsic UV-absorbing gas in the Seyfert galaxy NGC 4151, using echelle spectra obtained with the Space Telescope Imaging Spectrograph (STIS). We confirm the presence of the kinematic components detected in earlier GHRS observations as well as a new broad absorption feature at a radial velocity of -1680 km/s. The UV continuum of NGC 4151 decreased by a factor of 4 over the previous two years, and we argue the changes in the column density of the low ionization absorption lines associated with the broad component at -490 km/s reflect the decrease in the ionizing flux. Most of the strong absorption lines (e.g., N V, C IV, Si IV) from this component are saturated, but show substantial residual flux in their cores, indicating that the absorber does not fully cover the source of emission. Our interpretation is that the unocculted light is due to scattering by free electrons from an extended region, which reflects continuum, emission lines, and absorption lines. We have been able to constrain the densities for the kinematic components based on absorption lines from metastable states of C III and Fe II, and/or the ratios of ground and fine structure lines of O I,C II, and Si II. We have generated a set of photoionization models which match the ionic column densities for each component during the present low flux state and those seen in previous high flux states with the GHRS and STIS, confirming that the absorbers are photoionized and respond to the changes in the continuum flux. We have been able to map the relative radial positions of the absorbers, and find that the gas decreases in density with distance. None of the UV absorbers is of sufficiently large column density or high enough ionization state to account for the X-ray absorption.Comment: 46 pages (Latex), 14 figures (postscript), plus a landscape table (Latex), to appear in the Astrophysical Journa
    • 

    corecore