research

Experiment K-6-01. Distribution and biochemistry of mineral and matrix in the femurs of rats

Abstract

Previous analyses of the composition of mineral and matrix in the bone of young rats following space flight has revealed deficits in calcium, phosphorus, and osteocalcin, a non-collagenous protein, without an associated decrease in collagen. To characterize the location and nature of this mineralization defect in a weight bearing long bone, the femur, researchers attempted to relate the spatial distribution of mineral in situ in the proximal, central and distal thirds of the femoral diaphysis to the biochemical composition of bone from the same area. Biochemical analyses revealed lower concentrations of calcium, phosphorus and osteocalcin but not collagen only in the central third of the diaphysis of the flight animals (F) compared to synchronous controls (S). Collagen concentration was reduced only in the proximal third of the diaphysis, where all 3 crosslinks, expressed as nM/mol collagen were higher in F than S. A new technique, x ray microtomography, with a resolution of 26 microns, was used to obtain semi-quantitative data on mineral distribution in reconstructed sections of wet whole bone. To improve the resolution of the mineral density distribution, images of the surfaces of cut sections were analyzed by backscattered electrons in a scanning electron microscope (BSE). There was good agreement between the results of the two stereochemical techniques which revealed distinct patterns of mineralization in transverse and longitudinal directions of the diaphysis. The novel methodology developed for this flight experiment shows considerable promise in elucidating the biochemical nature of what appear to be regional alterations in the mineralization of long bones of animals exposed to spaceflight

    Similar works