9 research outputs found

    Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin

    Get PDF
    Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry- assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin

    Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Get PDF
    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research

    Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements

    Get PDF
    Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue

    Penetration of normal, damaged and diseased skin--an in vitro study on dendritic core-multishell nanotransporters.

    No full text
    A growing intended or accidental exposure to nanoparticles asks for the elucidation of potential toxicity linked to the penetration of normal and lesional skin. We studied the skin penetration of dye-tagged dendritic core-multishell (CMS) nanotransporters and of Nile red loaded CMS nanotransporters using fluorescence microscopy. Normal and stripped human skin ex vivo as well as normal reconstructed human skin and in vitro skin disease models served as test platforms. Nile red was delivered rapidly into the viable epidermis and dermis of normal skin, whereas the highly flexible CMS nanotransporters remained solely in the stratum corneum after 6h but penetrated into deeper skin layers after 24h exposure. Fluorescence lifetime imaging microscopy proved a stable dye-tag and revealed striking nanotransporter-skin interactions. The viable layers of stripped skin were penetrated more efficiently by dye-tagged CMS nanotransporters and the cargo compared to normal skin. Normal reconstructed human skin reflected the penetration of Nile red and CMS nanotransporters in human skin and both, the non-hyperkeratotic non-melanoma skin cancer and hyperkeratotic peeling skin disease models come along with altered absorption in the skin diseases

    Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin

    No full text
    Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment
    corecore