15 research outputs found

    Exon organisation of the mouse gene encoding the Adrenoleukodystrophy related protein (ALDRP)

    No full text
    International audienceALDR is one of the four genes encoding an ATP Binding Cassette (ABC) hemi-transporter of the peroxisomal membrane so far identified in mammalian cells. The best known of these is X-ALD, whose dysfunction has been causally associated with X-linked adrenoleukodystrophy. ALDR and X-ALD protein product are closely related and we show here that this striking conservation is maintained at the genomic level. Although extending to a larger genomic region, the organisation of the mouse ALDR gene mirrors exactly that of X-ALD. This supports further the hypothesis that among the four known peroxisomal ABC hemi-transporters ALDRP is the most likely candidate as a modifier contributing to the phenotypic variability of X-linked adrenoleukodystrophy

    The scl +18/19 Stem Cell Enhancer Is Not Required for Hematopoiesis: Identification of a 5â€Č Bifunctional Hematopoietic-Endothelial Enhancer Bound by Fli-1 and Elf-1

    Get PDF
    Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl(−/−) embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5â€Č enhancer (−3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development

    PAX5-ELN oncoprotein promotes multistep B-cell acute lymphoblastic leukemia in mice

    No full text
    International audiencePAX5 is a well-known haploinsufficient tumor suppressor gene in human B-cell precursor acute lymphoblastic leukemia (B-ALL) and is involved in various chromosomal translocations that fuse a part of PAX5 with other partners. However, the role of PAX5 fusion proteins in BALL initiation and transformation is ill-known. We previously reported a new recurrent t(7;9)(q11;p13) chromosomal translocation in human BALL that juxtaposed PAX5 to the coding sequence of elastin (ELN). To study the function of the resulting PAX5-ELN fusion protein in BALL development, we generated a knockin mouse model in which the PAX5-ELN transgene is expressed specifically in B cells. PAX5-ELN-expressing mice efficiently developed BALL with an incidence of 80%. Leukemic transformation was associated with recurrent secondary mutations on Ptpn11, Kras, Pax5, and Jak3 genes affecting key signaling pathways required for cell proliferation. Our functional studies demonstrate that PAX5-ELN affected B-cell development in vitro and in vivo featuring an aberrant expansion of the pro-B cell compartment at the preleukemic stage. Finally, our molecular and computational approaches identified PAX5-ELN-regulated gene candidates that establish the molecular bases of the pre-leukemic state to drive BALL initiation. Hence, our study provides a new in vivo model of human BALL and strongly implicates PAX5 fusion proteins as potent oncoproteins in leukemia development

    Niche-expressed Galectin-1 is involved in pre-B acute lymphoblastic leukemia relapse through pre-B cell receptor activation

    Get PDF
    B-cell acute lymphoblastic leukemia (B-ALL) reflects the malignant counterpart of developing B cells in the bone marrow (BM). Despite tremendous progress in B-ALL treatment, the overall survival of adults at diagnosis and patients at all ages after relapse remains poor. Galectin-1 (GAL1) expressed by BM supportive niches delivers proliferation signals to normal pre-B cells through interaction with the pre-B cell receptor (pre-BCR). Here, we asked whether GAL1 gives non-cell autonomous signals to pre-BCR+ pre-B ALL, in addition to cell-autonomous signals linked to genetic alterations. In syngeneic and patient-derived xenograft (PDX) murine models, murine and human pre-B ALL development is influenced by GAL1 produced by BM niches through pre-BCR-dependent signals, similarly to normal pre-B cells. Furthermore, targeting pre-BCR signaling together with cell-autonomous oncogenic pathways in pre-B ALL PDX improved treatment response. Our results show that non-cell autonomous signals transmitted by BM niches represent promising targets to improve B-ALL patient survival
    corecore