1,577 research outputs found

    A stochastic SIR network epidemic model with preventive dropping of edges

    Get PDF
    A Markovian SIR (Susceptible – Infectious - Recovered) model is considered for the spread of an epidemic on a configuration model network, in which susceptible individuals may take preventive measures by dropping edges to infectious neighbours. An effective degree formulation of the model is used in conjunction with the theory of density dependent population processes to obtain a law of large numbers and a functional central limit theorem for the epidemic as the population size N - ¥, assuming that the degrees of individuals are bounded. A central limit theorem is conjectured for the final size of the epidemic. The results are obtained for both the Molloy–Reed (in which the degrees of individuals are deterministic) and Newman–Strogatz–Watts (in which the degrees of individuals are independent and identically distributed) versions of the configuration model. The two versions yield the same limiting deterministic model but the asymptotic variances in the central limit theorems are greater in the Newman–Strogatz–Watts version. The basic reproduction number R0 and the process of susceptible individuals in the limiting deterministic model, for the model with dropping of edges, are the same as for a corresponding SIR model without dropping of edges but an increased recovery rate, though, when R0 > 1, the probability of a major outbreak is greater in the model with dropping of edges. The results are specialised to the model without dropping of edges to yield conjectured central limit theorems for the final size of Markovian SIR epidemics on configuration-model networks, and for the giant components of those networks. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations are good, even for moderate N

    Individual preventive social distancing during an epidemic may have negative population-level outcomes

    Get PDF
    The outbreak of an infectious disease in a human population can lead to individuals responding with preventive measures in an attempt to avoid getting infected. This leads to changes in contact patterns. However, as we show in this paper, rational behaviour at the individual level, such as social distancing from infectious contacts, may not always be beneficial for the population as a whole. We use epidemic network models to demonstrate the potential negative consequences at the population level. We take into account the social structure of the population through several network models. As the epidemic evolves, susceptible individuals may distance themselves from their infectious contacts. Some individuals replace their lost social connections by seeking new ties. If social distancing occurs at high rates at the beginning of an epidemic, then this can prevent an outbreak from occurring. However, we show that moderate social distancing can worsen the disease outcome, both in the initial phase of an outbreak and the final epidemic size. Moreover, the same negative effect can arise in real-world networks. Our results suggest that one needs to be careful when targeting behavioural changes as they could potentially worsen the epidemic outcome. Furthermore, network structure crucially influences the way that individual-level measures impact the epidemic at the population level. These findings highlight the importance of careful analysis of preventive measures in epidemic models

    Oxygen uptake and denitrification in soil aggregates

    Get PDF
    A mathematical model of oxygen uptake by bacteria in agricultural soils is presented with the goal of predicting anaerobic regions in which denitrification occurs. In an environment with a plentiful supply of oxygen, microorganisms consume oxygen through normal respiration. When the local oxygen concentration falls below a threshold level, denitrification may take place leading to the release of nitrous oxide, a potent agent for global warming. A two-dimensional model is presented in which one or more circular soil aggregates are located at a distance below the ground-level at which the prevailing oxygen concentration is prescribed. The level of denitrification is estimated by computing the area of any anaerobic cores which may develop in the interior of the aggregates. The oxygen distribution throughout the model soil is calculated first for an aggregated soil for which the ratio of the oxygen diffusivities between an aggregate and its surround is small via an asymptotic analysis. Second, the case of a non-aggregated soil featuring one or more microbial hotspots, for which the diffusion ratio is arbitrary, is examined numerically using the boundary-element method. Calculations with multiple aggregates demonstrate a sheltering effect whereby some aggregates receive less oxygen than their neighbours. In the case of an infinite regular triangular network representing an aggregated soil, it is shown that there is an optimal inter-aggregate spacing which minimises the total anaerobic core area

    The Replicase Gene of Avian Coronavirus Infectious Bronchitis Virus Is a Determinant of Pathogenicity

    Get PDF
    We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene

    Mixing of Active and Sterile Neutrinos

    Full text link
    We investigate mixing of neutrinos in the ν\nuMSM (neutrino Minimal Standard Model), which is the MSM extended by three right-handed neutrinos. Especially, we study elements of the mixing matrix ΘαI\Theta_{\alpha I} between three left-handed neutrinos να\nu_\alpha (α=e,μ,τ\alpha = e,\mu,\tau) and two sterile neutrinos NIN_I (I=2,3I=2,3) which are responsible to the seesaw mechanism generating the suppressed masses of active neutrinos as well as the generation of the baryon asymmetry of the universe (BAU). It is shown that ΘeI\Theta_{eI} can be suppressed by many orders of magnitude compared with ΘμI\Theta_{\mu I} and ΘτI\Theta_{\tau I}, when the Chooz angle θ13\theta_{13} is large in the normal hierarchy of active neutrino masses. We then discuss the neutrinoless double beta decay in this framework by taking into account the contributions not only from active neutrinos but also from all the three sterile neutrinos. It is shown that N2N_2 and N3N_3 give substantial, destructive contributions when their masses are smaller than a few 100 MeV, and as a results ΘeI\Theta_{e I} receive no stringent constraint from the current bounds on such decay. Finally, we discuss the impacts of the obtained results on the direct searches of N2,3N_{2,3} in meson decays for the case when N2,3N_{2,3} are lighter than pion mass. We show that there exists the allowed region for N2,3N_{2,3} with such small masses in the normal hierarchy case even if the current bound on the lifetimes of N2,3N_{2,3} from the big bang nucleosynthesis is imposed. It is also pointed out that the direct search by using π+→e++N2,3\pi^+ \to e^+ + N_{2,3} and K+→e++N2,3K^+ \to e^+ + N_{2,3} might miss such N2,3N_{2,3} since the branching ratios can be extremely small due to the cancellation in ΘeI\Theta_{eI}, but the search by K+→μ++N2,3K^+ \to \mu^+ + N_{2,3} can cover the whole allowed region by improving the measurement of the branching ratio by a factor of 5.Comment: 30 pages, 32 figure

    Estimating stable isotope turnover rates of epidermal mucus and dorsal muscle for an omnivorous fish using a diet-switch experiment

    Get PDF
    © 2018, The Author(s). Stable isotope (SI) analysis studies rely on knowledge of isotopic turnover rates and trophic-step discrimination factors. Epidermal mucus (‘mucus’) potentially provides an alternative SI ‘tissue’ to dorsal muscle that can be collected non-invasively and non-destructively. Here, a diet-switch experiment using the omnivorous fish Cyprinus carpio and plant- and fish-based formulated feeds compared SI data between mucus and muscle, including their isotopic discrimination factors and turnover rates (as functions of time T and mass G, at isotopic half-life (50) and equilibrium (95)). Mucus isotope data differed significantly and predictively from muscle data. The fastest δ13C turnover rate was for mucus in fish on the plant-based diet (T50: 17 days, T95: 74 days; G50: 1.08(BM), G95: 1.40(BM)). Muscle turnover rates were longer for the same fish (T50: 44 days, T95: 190 days; G50: 1.13(BM), G95: 1.68(BM)). Longer half-lives resulted in both tissues from the fish-based diet. δ13C discrimination factors varied by diet and tissue (plant-based: 3.11–3.28‰; fishmeal: 1.28–2.13‰). Mucus SI data did not differ between live and frozen fish. These results suggest that mucus SI half-lives provide comparable data to muscle, and can be used as a non-destructive alternative tissue in fish-based SI studies

    Neutrino Mass and μ→e+γ\mu \rightarrow e + \gamma from a Mini-Seesaw

    Full text link
    The recently proposed "mini-seesaw mechanism" combines naturally suppressed Dirac and Majorana masses to achieve light Standard Model neutrinos via a low-scale seesaw. A key feature of this approach is the presence of multiple light (order GeV) sterile-neutrinos that mix with the Standard Model. In this work we study the bounds on these light sterile-neutrinos from processes like \mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We show that viable parameter space exists and that, interestingly, key observables can lie just below current experimental sensitivities. In particular, a motivated region of parameter space predicts a value of BR(\mu ---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to presentation, results unchanged
    • …
    corecore