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Abstract
A Markovian Susceptible → Infectious → Recovered (SIR) model is considered for
the spread of an epidemic on a configurationmodel network, in which susceptible indi-
viduals may take preventive measures by dropping edges to infectious neighbours. An
effective degree formulation of the model is used in conjunction with the theory of
density dependent population processes to obtain a law of large numbers and a func-
tional central limit theorem for the epidemic as the population size N → ∞, assuming
that the degrees of individuals are bounded. A central limit theorem is conjectured for
the final size of the epidemic. The results are obtained for both the Molloy–Reed (in
which the degrees of individuals are deterministic) and Newman–Strogatz–Watts (in
which the degrees of individuals are independent and identically distributed) versions
of the configuration model. The two versions yield the same limiting deterministic
model but the asymptotic variances in the central limit theorems are greater in the
Newman–Strogatz–Watts version. The basic reproduction number R0 and the process
of susceptible individuals in the limiting deterministic model, for the model with drop-
ping of edges, are the same as for a corresponding SIR model without dropping of
edges but an increased recovery rate, though, when R0 > 1, the probability of a major
outbreak is greater in the model with dropping of edges. The results are specialised
to the model without dropping of edges to yield conjectured central limit theorems
for the final size of Markovian SIR epidemics on configuration-model networks, and
for the size of the giant components of those networks. The theory is illustrated by
numerical studies, which demonstrate that the asymptotic approximations are good,
even for moderate N .
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1 Introduction

In understanding the transmission dynamics in a population, one of themost important
modelling components is the contact process. In this work we consider a form of self-
initiated social distancing in response to an epidemic while at the same time taking
into account the underlying contact network structure of the population. The resulting
network is sometimes referred to as an adaptive network, e.g. Gross et al. (2006), Shaw
and Schwartz (2008), Zanette and Risau-Gusmán (2008) and Tunc and Shaw (2014).
Behavioural dynamics in infectious disease models can come in many different forms.
Much of the literature that combines behavioural changes with network models uses
agent-based simulations, as in the works cited above, although analytical advances
have also been made (e.g. Britton et al. (2016) and Jacobsen et al. (2018)). Our work
takes the model introduced in Britton et al. (2016) as its starting point. Britton et al.
(2016) consider a broader class of models but restrict the analysis to the initial phase of
the epidemic. In the current paperwe analyse the time evolution and the final size of the
epidemic. We model an SIR (Susceptible → Infectious → Recovered) infection on a
configuration network that is static in the absence of infection. A susceptible individual
breaks off its connection to an infectious neighbour upon learning of that neighbour’s
infectious status. This occurs at a constant rate, independently per neighbour. One
can think of this mechanism as being governed by infectious individuals informing
their neighbours. Whereas infectious and recovered neighbours do not take any action
upon being informed, susceptible neighbours want to avoid becoming infected and
therefore cease contact with the infectious individual. We use the term ‘preventive
dropping of edges’ to indicate this type of behaviour. Details of the model formulation
are presented in Sect. 2.

To some extent, from the point of view of a susceptible neighbour of an infectious
individual, it does not matter whether the infectious individual recovers or informs
and dissolves the connection. Either way, it means that the susceptible neighbour can
no longer acquire infection from this individual. In Sect. 5 we see that this is true
when dealing with the asymptotic mean (deterministic) process, in that the number
of susceptibles in the deterministic process for the model with dropping of edges
coincides with that for the model without dropping of edges but with an increased
recovery rate. In Sect. 8 we also see that this is not true for the stochastic process, in
particular, the probability of amajor outbreak differs (Theorem8.1). Indeed,we cannot
expect the two stochastic processes to coincide since informing neighbours happens
independently of one another, while recovery affects all neighbours simultaneously.

In Sect. 3 we analyse the preventive dropping model throughout the epidemic out-
break, by using a so-called effective degree construction (cf. Ball and Neal 2008).
Using such a construction, conditional on a major outbreak, by using techniques from
Ethier and Kurtz (1986), we show under the assumption of bounded degrees that, as
the population size N tends to infinity, the fractions of the population that are sus-
ceptible, infective and recovered satisfy a law of large numbers (LLN) over any finite
time interval (more specifically that they converge almost surely to a limiting deter-
ministic process), together with an associated functional central limit theorem (CLT)
which describes fluctuations of the stochastic epidemic process about the limiting
deterministic epidemic.
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The population consists of N individuals that make up a network, which is formed
using the configuaration model. The configuration model was introduced by Bollobás
(1980), see Bollobás (2001) for further references, and comes in two versions: either
(i) the degrees of individuals are prescribed deterministically, the Molloy–Reed (MR)
random graph (Molloy and Reed 1995), or (ii) the degrees of individuals are assumed
to be independent and identically distributed, the Newman–Strogatz–Watts (NSW)
random graph (Newman et al. 2001). We treat both the MR and the NSW versions. If
the limiting distribution of the degrees in the MR construction agrees with the degree
distribution of the NSW random graph, the two versions give the same LLN, as we
show in Theorem 3.1. However, the two versions differ regarding the variance in the
CLTs, since (for finite N ) there is greater variability in the degrees of the individuals in
the NSWmodel than in theMRmodel. The functional CLT for the epidemic on anMR
random graph is given in Theorem 3.2. By making a random time transformation, in
Sect. 4, we conjecture a CLT for the final outcome of the epidemic on an MR random
graph; see Conjecture 4.1. Corresponding results for the epidemic on an NSW random
graph are discussed in Sect. 7; see Theorem 7.2 and Conjecture 7.1. To prove the latter
results we require a version of the functional CLT in Ethier and Kurtz (1986) which
allows for asymptotically random initial conditions; see Theorem 7.1.

The asymptotic variance–covariancematrix in theCLT in Proposition 4.1 is far from
explicit. In order to obtain a nearly-explicit expression for the limiting variance of the
final size, it is necessary to solve (partially) a time-transformed limiting determinis-
tic process, which is more amenable to analysis than the corresponding deterministic
process in real time. This is done in Sect. 5.1 and linked to the solution of the real-
time process in Sect. 5.1.2. These results are used in Sects. 6 and 7 to obtain almost
fully explicit expressions for the asymptotic variance of the final size of epidemics on
MR and NSW random graphs, respectively, see Proposition 6.1 and Conjecture 7.1. In
Sect. 5.2, we connect our analysis of the deterministic effective degreemodel to results
derived using other deterministic approaches (cf. Volz (2008), Leung and Diekmann
(2016) for related models), leading to a simple proof that the process of susceptible
individuals in the limiting deterministic model for the epidemic with preventive drop-
ping of edges is identical to that in the corresponding deterministic model without
dropping of edges but with an increased recovery rate (see Remark 5.3).

Note that in the absence of behaviour change, we are in the setting of a Markov SIR
epidemic on a configuration model network, which we consider in Sect. 9. This model
has been analysed in several papers, e.g. Newman (2002), Kenah and Robins (2007),
Lindquist et al. (2011) and Miller (2011). Our results further improve understanding
of this well-studied model, particularly in terms of the asymptotic variance of the
final size in Conjecture 9.1. Moreover, our work yields conjectured CLTs for the size
of the giant component in MR and NSW configuration model random graphs; see
Conjecture 9.2.

In Sect. 10, we illustrate our results with some numerical studies. In particular, we
demonstrate that the asymptotic results generally give a good approximation for mod-
erate population sizes, investigate the impact of the dropping of edges on properties
of epidemics and do some comparison of the behaviour of the epidemic on MR and
NSW type random graphs. Some brief concluding comments are given in Sect. 11.
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Finally, we would like to make a note on the structure of the paper. Clearly, this
paper does not readily lend itself to a quick superficial read, owing to its length and
some of the technicalities and details involved in obtaining our results. However, we
have tried to help the reader by formulating our main results in terms of propositions,
theorems and well-motivated conjectures. The more technical aspects can be found in
the appendices for the interested reader, which consequently constitute a significant
part of the paper.

2 The stochastic SIR network epidemic model with preventive
dropping

In this section we define the stochastic SIR network epidemic model with preventive
dropping. This model is a special case of the network epidemic model with preventive
rewiring defined in Britton et al. (2016), namely where there is no latent period and
where the fraction of dropped edges that are replaced by new edges is set to zero.

The population consists of N individuals, labelled 1, 2, . . . , N , that make up a net-
work. The network is formed using the configuration model, which, as described in
Sect. 1, comes in two versions, namely MR and NSW random graphs. Let D be a ran-
dom variable which describes the degree of a typical individual and pk = P(D = k),
k = 0, 1, . . .. Let μD and σ 2

D denote the mean and variance of D, respectively, both
of which are assumed to be finite.

(i) In theMRmodel, the degrees are prescribed. More specifically, for N = 1, 2, . . .,
let dN

1 , dN
2 , . . . , dN

N denote the degrees of the individualswhen the population size

is N . Note that these are deterministic. Let pNk = N−1∑N
i=1 δk,dN

i
, k = 0, 1, . . .

be the empirical distribution of dN
1 , dN

2 , . . . , dN
N , where the Kronecker delta δk, j

is 1 if k = j and 0 otherwise. It is assumed that limN→∞ pNk = pk, k = 0, 1, . . ..
(ii) In the NSW model, the degrees D1, D2, . . . , DN of the N individuals are inde-

pendent and identically distributed copies of D. A sequence of networks, indexed
by N , may be constructed from a sequence D1, D2, . . . of independent and identi-
cally distributed copies of D by using the first N random variables for the network
on N individuals.

In both models the network is formed by attaching a number of stubs (i.e. half-
edges) to each individual, according to its degree (so, for example, in the NSWmodel,
Di stubs are attached to individual i , for i = 1, 2, . . . , N ), and then pairing up these
stubs uniformly at random to form the network. If D1+D2+· · ·+DN is odd, there is
a left-over stub, which is ignored. The network may have some ‘defects’, specifically
self-loops and multiple edges between pairs of individuals, but provided σ 2

D < ∞,
which we assume, such defects become sparse in the network as N → ∞; see Durrett
(2007), Theorem 3.1.2.

A Markovian SIR epidemic is defined on the network of N individuals as follows.
Each individual is at any point in time either susceptible, infective or recovered (and
immune to further infection). An infective individual infects each of its susceptible
neighbours at the points of independent Poisson processes, each having rate β. An
infectious individual recovers and becomes immune at rate γ (implying that the dura-
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tion of the infectious period follows an exponential distribution having mean 1/γ ).
Finally, susceptible individuals that have infectious neighbours drop such connections,
independently, at rate ω (an equivalent description to be used later is that the infective
‘warns’ its neighbours independently at rate ω, and warned susceptible individuals
drop the corresponding edge). All infectious periods, infecting processes and edge-
dropping processes are mutually independent. The epidemic is initiated at time t = 0
by one or more individuals being infectious and all other individuals being suscepti-
ble. More precise initial conditions are given when they are required. The epidemic
continues until there is no infectious individual. Then the epidemic stops and the result
is that some of the individuals have been infected (and later recovered) and the rest
of the population remains susceptible and hence have not been infected during the
outbreak.

The parameters of the model are the degree distribution {pk}, including its mean
μD and variance σ 2

D , the infection rate β, the recovery rate γ and the dropping rate ω.
It was shown in Britton et al. (2016) that the basic reproduction number for the

model is given by

R0 = β

β + γ + ω

(

μD + σ 2
D

μD
− 1

)

, (2.1)

see also Sect. 8. Note that the first factor in (2.1) is the probability that an infec-
tive infects a given susceptible neighbour before either the infective recovers or the
neighbour drops its edge to that infective. The second factor is the expected number
of susceptible neighbours for infected individuals during the early stages of an out-
break initiated by few infectives. Owing to the way the network is constructed, the
degree D̃ of a typical neighbour of a typical individual has the size-biased distribution
P(D̃ = k) = μ−1

D kpk , k = 1, 2, . . ., and hence mean μ−1
D E[D2] = μ−1

D (μ2
D + σ 2

D).
In the early stages of an outbreak, a typical infective has all susceptible neighbours
except for one, namely its infector.

Note that R0 for the dropping model is the same as for a Markovian SIR epidemic
on a configuration model network without dropping of edges but with an increased
recovery rate γ + ω; see also Remark 5.3 and Sect. 8, where we discuss this modified
model with increased recovery rate and its relation to the dropping model. Further-
more, from (2.1) we find that R0 is a monotonically decreasing function of ω, i.e.
dropping edges always decreases the epidemic threshold parameter R0; see also Fig. 5
in Sect. 10.4. For epidemics initiated by few infectives, this paper is concerned mainly
with the case where R0 > 1, since only then is there a possibility for a major outbreak
to take place.

3 Effective degree formulation

In this section we analyse the stochastic SIR network epidemic model with preventive
dropping that is described in Sect. 2. We do so by extending the ‘effective degree’
construction of an SIR epidemic on a configuration model network, introduced in Ball
and Neal (2008), to incorporate dropping of edges. This allows us to prove a LLN and
a functional CLT for the epidemic process (Theorems 3.1 and 3.2). Our proofs rely
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on the results of Ethier and Kurtz (1986) (see also Kurtz (1970, 1971)), and we adopt
mostly the notation used in their work for ease of reference.

In the effective degree formulation the network is constructed as the epidemic
progresses. The process starts with some individuals infective and the remaining indi-
viduals susceptible, but with none of the stubs paired up. For i = 1, 2, . . . , N , the
effective degree of individual i is initially dN

i in the MR graph and Di in the NSW
graph. Infected individuals behave in the following fashion. An infective, i say, trans-
mits infection down its unpaired stubs at points of independent Poisson processes,
each having rate β. When i transmits infection down a stub, that stub is paired with a
stub (attached to individual j , say) chosen uniformly at random from all other unpaired
stubs to form an edge. If i �= j then the effective degrees of both i and j are reduced by
1, otherwise the effective degree of i is reduced by 2. If individual j is susceptible then
it becomes infective. If individual j is infective or recovered then nothing happens,
apart from the edge being formed. The infective i also independently sends warning
messages down its unpaired stubs at points of independent Poisson processes, each
having rate ω. When i sends a warning message down a stub, that stub is paired with a
stub (attached to individual j , say) chosen uniformly at random from all other unpaired
stubs. If individual j is susceptible then the stub from individual i and the stub from
individual j are deleted, corresponding to dropping of an edge in the original model.
If individual j is infective or recovered then the two stubs are paired to form an edge.
In all three cases, the effective degrees of i and j are reduced as above. Individual i
recovers independently at rate γ , keeping all, if any, of its unpaired stubs. Note that in
the formulation in Ball andNeal (2008), when an infective recovers, its unpaired stubs,
if any, are paired immediately; however, that is not necessary and indeed complicates
analysis of the model.

Note also that we now use the equivalent formulation of the process for dropping
edges of Sect. 2, where dropping is driven by infectives rather than by susceptibles,
although it is clear that the two formulations are probabilistically equivalent. The
change is required for the effective degree formulation to model dropping of edges
correctly.

Before proceeding we introduce some notation. For i = 0, 1, . . . and t ≥ 0, let
XN
i (t) and Y N

i (t) be respectively the numbers of susceptibles and infectives having
effective degree i at time t .We refer to such individuals as type-i susceptibles and type-
i infectives. For t ≥ 0, let ZN

E (t) be the number of unpaired stubs attached to recovered
individuals at time t . (Note that it is not necessary to keep track of the effective degrees
of recovered individuals since only the total number of unpaired stubs attached to
recovered individuals, and not the effective degrees of the individuals involved, is
required in the above effective degree formulation.)Let XN (t) = (XN

0 (t), XN
1 (t), . . .),

Y N (t) = (Y N
0 (t),Y N

1 (t), . . .) and W N (t) = (XN (t),Y N (t), ZN
E (t)). (Unless stated

to the contrary, vectors are row vectors in this paper.) Let H = Z
∞+ × Z

∞+ × Z+
denote the state space of {W N (t)} = {W N (t) : t ≥ 0}. Define unit vectors eSi , e

I
i

(i = 0, 1, . . .) and eR on H , where, for example, eSi has a one in the i th ‘susceptible
component’ and zeros elsewhere, and eR has a one in the ‘recovered component’ and
zeros elsewhere. Let n = (nX

0 , nX
1 , . . . , nY0 , nY1 , . . . , nZ

E ) denote a typical element
of H , and let nX

E = ∑∞
i=1 in

X
i and nYE = ∑∞

i=1 in
Y
i . Thus n

X
E , nYE and nZ

E are the
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total number of stubs attached to susceptibles, infectives and recovered individuals,
respectively, when W N (t) = n.

The process {W N (t)} is a continuous-time Markov chain with the following tran-
sition intensities, where an intensity is zero if nX

E + nYE + nZ
E = 1, since then there is

only one stub remaining.
For i, j = 1, 2, . . .,

(i) type-i infective infects a type- j susceptible

qN (n, n − eIi + eIi−1 − eSj + eIj−1) = βinYi
jnX

j

nX
E + nYE + nZ

E − 1
;

(ii) type-i infective ‘infects’ a type- j infective, so an edge is formed

qN (n, n − eIi + eIi−1 − eIj + eIj−1) = βinYi
jnYj

nX
E + nYE + nZ

E − 1
;

(iii) type-i infective warns a type- j susceptible, so an edge is dropped

qN (n, n − eIi + eIi−1 − eSj + eSj−1) = ωinYi
jnX

j

nX
E + nYE + nZ

E − 1
;

(iv) type-i infective ‘warns’ a type- j infective, so an edge is formed

qN (n, n − eIi + eIi−1 − eIj + eIj−1) = ωinYi
jnYj

nX
E + nYE + nZ

E − 1
.

For i = 1, 2, . . .,

(v) type-i infective ‘infects’ a recovered individual, so an edge is formed

qN (n, n − eIi + eIi−1 − eR) = βinYi
nZ
E

nX
E + nYE + nZ

E − 1
;

(vi) type-i infective ‘warns’ a recovered individual, so an edge is formed

qN (n, n − eIi + eIi−1 − eR) = ωinYi
nZ
E

nX
E + nYE + nZ

E − 1
.

For i = 0, 1, . . .,

(vii) type-i infective recovers

qN (n, n − eIi + ieR) = γ nYi .
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Remark 3.1 (Comments on the intensities) Note that although the above inten-
sities are all independent of N , we index them by N since that is required
so that {W N (t)} is a density dependent population process, see (3.6) and (3.7)
below. Note also that the intensities in (ii) and (iv) above need to be modi-
fied slightly if i = j to include the possibility that an infective ‘infects’ or
‘warns’ itself. For example, the intensity for a type-i infective ‘infecting’ itself
is given by qN (n, n − eIi + eIi−2) = βi(i − 1)nYi /(nX

E + nYE + nZ
E − 1),

so this should be subtracted from the intensity in (ii) when j = i and included instead
in a new transition, (ii’) say. It is easily verified that that qN (n, n− eIi + eIi−2) = O(1)
as N → ∞, so the modifications may be absorbed into the O(1/N ) term in (3.6)
below and ignoring such transitions does not affect the LLNs and CLTs in the paper.

We now introduce notation for the jumps of {W N (t)}. Note that the transitions in
(ii) and (iv) above are identical, as are the transitions in (v) and (vi), so there are five
types of jumps. For i, j = 1, 2, . . ., let

l(1)i j = −eIi + eIi−1 − eSj + eIj−1, (3.1)

l(2)i j = −eIi + eIi−1 − eIj + eIj−1, (3.2)

l(3)i j = −eIi + eIi−1 − eSj + eSj−1, (3.3)

for i = 1, 2, . . ., let

l(4)i = −eIi + eIi−1 − eR, (3.4)

and, for i = 0, 1, . . ., let

l(5)i = −eIi + ieR. (3.5)

Then, excluding self-infection and self-warning (see Remark 3.1), the set of possible
jumps of {W N (t)} from a typical state n ∈ H is Δ = ∪5

k=1Δk , where

Δk =
{
l(k)i j : i, j = 1, 2, . . .

}
(k = 1, 2, 3), Δ4 =

{
l(4)i : i = 1, 2, . . .

}

and Δ5 =
{
l(5)i : i = 0, 1, . . .

}
.

Let x = (x0, x1, . . .) and y = (y0, y1, . . .) ∈ R
∞+ , zE ∈ R+ and w = (x, y, zE ).

Further, let xE = ∑∞
i=1 i xi , yE = ∑∞

i=1 iyi and ηE = xE + yE + zE . For ε > 0, let
HN

ε = {n ∈ H : ∑∞
i=1 in

X
i ≥ εN }. For any ε > 0, the intensities of the jumps of

{W N (t)} admit the form

qN (n, n + l) = N
[
βl (N

−1n) + O(1/N )
]

(n ∈ HN
ε , l ∈ Δ), (3.6)
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with the functions βl (l ∈ Δ) given by

βl (w) = βl (x, y, zE ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β
(1)
i j (x, y, zE ) = βiyi j x j

ηE
for l = l(1)i j ∈ Δ1,

β
(2)
i j (x, y, zE ) = (β+ω)iyi j y j

ηE
for l = l(2)i j ∈ Δ2,

β
(3)
i j (x, y, zE ) = ωiyi j x j

ηE
for l = l(3)i j ∈ Δ3,

β
(4)
i (x, y, zE ) = (β+ω)iyi zE

ηE
for l = l(4)i ∈ Δ4,

β
(5)
i (x, y, zE ) = γ yi for l = l(5)i ∈ Δ5.

(3.7)

Remark 3.2 (Applying the theory of Ethier and Kurtz) The theory of density depen-
dent population processes in Ethier and Kurtz (1986), Chapter 11, is for a class of
continuous-time Markov chains whose state space is a subset of Zd for some d ∈ N.
Thus to use this theory we need to assume that there is a maximum degree, i.e. that
dmax < ∞, where dmax = sup{k ≥ 0 : pk > 0}. Then, for any ε > 0, provided the
sample paths of {W N (t)} remain within HN

ε , {W N (t)} is a density dependent pop-
ulation process; see Appendix B for details. We conjecture that our results continue
to hold when the condition dmax < ∞ is relaxed, provided suitable conditions are
imposed on (i) the distribution of D and (ii), for epidemics on MR random graphs, the
convergence of the empirical distribution of prescribed degrees.

The key theorems in Ethier and Kurtz (1986), Chapter 11, have their origin in
Kurtz (1970, 1971). However, the proofs in Ethier and Kurtz (1986) are different
from those in the earlier papers and the LLN is stronger in that it concerns almost
sure convergence rather than convergence in probability. In Ethier and Kurtz (1986),
the processes corresponding to {W N (t)} (N = 1, 2, . . .) are defined on the same
probability space by using a single set of independent unit-rate Poisson processes
indexed by the possible jumps l .

A LLN and a functional CLT for density dependent population processes having
countable state space are proved in Barbour and Luczak (2012a, b). They do not apply
immediately to {W N (t)} as the jumps of {ZN

E (t)} are unbounded, though that can be
overcome by replacing {ZN

E (t)} by {(ZN
0 (t), ZN

1 (t), . . .)}, where ZN
i (t) is the number

of recovered individuals having effective degree i at time t . We do not consider here
sufficient conditions for the theorems in Barbour and Luczak (2012a, b) to be satisfied
in the present setting, since dmax < ∞ is satisfied for real-life epidemics. We note
that LLNs for the Markov SIR epidemic (ω = 0) on an MR random graph with
unbounded degree are given in Decreusefond et al. (2012) and Janson et al. (2014),
and a functional CLT for the Markov SI epidemic (ω = γ = 0) on an MR random
graph with unbounded degree is given in KhudaBukhsh et al. (2017). It seems likely
that similar techniques used in the first two of those papers will apply to the present
model. LLNs for the Markov SIR epidemic (ω = 0) on an MR random graph with
bounded degree are given in Bohman and Picollelli (2012) and Barbour and Reinert
(2013), the latter for epidemics started by a trace of infection. Indeed our model
(assuming bounded degrees) fits into the framework of Barbour and Reinert (2013),
Sect 3.2.
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Following Ethier and Kurtz (1986), define the drift function F(w) = F(x, y, zE )

by

F(x, y, zE ) =
∑

l∈Δ

lβl (x, y, zE ).

Substituting from (3.7) yields (see Appendix A for details)

F(x, y, zE ) =
∞∑

i=0

[−βi xi + ω(−i xi + (i + 1)xi+1)
] yE

ηE
eSi

+
∞∑

i=0

[

(β + ω)(−iyi + (i + 1)yi+1)

(

1 + yE
ηE

)

+β(i + 1)xi+1
yE
ηE

− γ yi

]

eIi

+
[

γ yE − (β + ω)
yE zE
ηE

]

eR. (3.8)

Consider a sequence of epidemics indexed by N , each having ZN
E (0) = 0. Suppose

that N−1Y N
i (0)

a.s.−→ εi and N−1XN
i (0)

a.s.−→ pi − εi as N → ∞, where εE =
∑∞

i=1 iεi > 0 and
a.s.−→ denotes almost sure convergence. Note that for epidemics on

NSW random graphs XN (0) is random and, depending on how the initial infectives are
chosen, Y N (0)may also be random. The above almost sure convergence is reasonable
for such epidemics since in an NSW random graph, the fraction of vertices of any
given degree satisfies the strong law of large numbers. For epidemics on MR random
graphs it is often more natural for (XN (0),Y N (0)) to be non-random, in which case
N−1Y N

i (0) → εi and N−1XN
i (0) → pi − εi as N → ∞. Let x(0) = (p0 − ε0, p1 −

ε1, . . .) and y(0) = (ε0, ε1, . . .). The following result holds for epidemics on both
MR and NSW random graphs.

Theorem 3.1 (LLN for epidemic on network with dropping)
Suppose that dmax < ∞ and εE > 0. Then, for any T > 0,

lim
N→∞ sup

0≤t≤T
|N−1W N (t) − w(t)| = 0 almost surely,

where w(t) = (x(t), y(t), zE (t)) is given by the solution of the following system of
ordinary differential equations (ODEs) with initial conditionw(0) = (x(0), y(0), 0):

dxi
dt

= −βρE (t)i xi + ωρE (t)(−i xi + (i + 1)xi+1) (i = 0, 1, . . .), (3.9)

dyi
dt

= (β + ω)((i + 1)yi+1 − iyi ) − γ yi + (β + ω)ρE (t)[(i + 1)yi+1 − iyi ]
+ βρE (t)(i + 1)xi+1 (i = 0, 1, . . .), (3.10)
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dzE
dt

= γ yE (t) − (β + ω)ρE (t)zE , (3.11)

where
ρE (t) = yE (t)/ηE (t) (3.12)

and ηE (t) = xE (t) + yE (t) + zE (t).

Proof See Appendix B. 	

Remark 3.3 (Solving theODEs (3.9)–(3.11))The solutionof the systemofODEs (3.9)–
(3.11) is considered in Sect. 5. Note that under the conditions of Theorem 3.1 the
system of ODEs (3.9)–(3.11) is finite, so existence and uniqueness of a solution fol-
low from standard results.We do not consider existence and uniqueness of solutions to
ODEs (3.9)–(3.11) when the degrees are unbounded but acknowledge that further jus-
tification and some regularity conditions will be required. A similar comment applies
to the time-transformed system of ODEs (4.3)–(4.5) in Sect. 4.

For the epidemic on an MR random graph, a functional CLT for the fluctuations of
{W N (t)} about its deterministic limit {w(t)} is also available using Ethier and Kurtz
(1986), Theorem 11.2.3, as we formulate in Theorem 3.2. See Sect. 7 for discussion
of a corresponding CLT for the epidemic on an NSW random graph.

Write w as (w1, w2, . . .) and let ∂F(w) = [∂ j Fi (w)] denote the matrix of first
partial derivatives of F(w). For 0 ≤ u ≤ t < ∞, let Φ(t, u) be the solution of the
matrix ODE

∂

∂t
Φ(t, u) = ∂F(w(t))Φ(t, u), Φ(u, u) = I , (3.13)

where I denotes the identity matrix of appropriate dimension. Let

G(w) =
∑

l∈Δ

l�lβl (w),

where � denotes transpose. Note that ∂F(w(t)) is the coefficient matrix of the time-
inhomogeneous linear drift of the limiting Gaussian process {V (t)} in Theorem 3.2
below and Φ(t, u) enables a representation of {V (t)} in terms of an Itô integral with
respect to a time-inhomogeneous Brownian motion; see (7.1) in Sect. 7.

Theorem 3.2 (Functional CLT for epidemic on MR graph with dropping)
Suppose that dmax < ∞, εE > 0 and, for i = 0, 1, . . . , dmax,

lim
N→∞

√
N
(
N−1Y N

i (0) − εi

)
= vYi and lim

N→∞
√
N
(
N−1XN

i (0) − pi − εi

)
= vX

i ,

(3.14)
where v = (vX

0 , vX
1 , . . . , vX

dmax
, vY0 , vY1 , . . . , vYdmax

, 0) is constant. Then

√
N
(
{N−1W N (t)} − {w(t)}

)
⇒ {V (t)} as N → ∞, (3.15)
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where ⇒ denotes weak convergence and {V (t)} = {V (t) : t ≥ 0} is a zero-mean
Gaussian process with V (0) = v and covariance function given by

cov (V (t1), V (t2)) =
∫ min(t1,t2)

0
Φ(t1, u)G(w(u))Φ(t2, u)� du (t1, t2 ≥ 0).

Proof See Appendix B, where a complete definition of ⇒ is given. 	


Remark 3.4 (Computing the asymptotic variance) Theorem 3.2 yields immediately
that

Σ(t) = var (V (t)) =
∫ t

0
Φ(t, u)G(w(u))Φ(t, u)� du. (3.16)

It follows from (3.13) and (3.16) that Σ(t) satisfies the ODE

dΣ

dt
= G(w) + ∂F(w)Σ + Σ[∂F(w)]�, (3.17)

with initial condition Σ(0) = 0. Thus, provided dmax < ∞, Σ(t) can be computed
by numerically solving the ODEs (3.9)–(3.11) and (3.17) simultaneously.

4 Final outcome of epidemic onMR random graph

We conjecture a CLT for the final outcome of the epidemic with preventive dropping
on anMR random graph (see Conjecture 4.1). In order to do so, we consider a random
time-transformation of the real-time process.

For t ≥ 0, let XN
E (t) = ∑∞

i=1 i X
N
i (t) and Y N

E (t) = ∑∞
i=1 iY

N
i (t) be respectively

the numbers of susceptible and infectious stubs at time t . Let τ N = inf{t ≥ 0 :
Y N
E (t) = 0}, so the final number of susceptibles of different types is given by XN (τ N ).

For δ ≥ 0, let τ N
δ = inf{t ≥ 0 : N−1Y N

E (t) ≤ δ}, so τ N = τ N
0 . Recall the definition of

εE following (3.8). For δ ∈ (0, εE ), we derive a CLT forW N (τ N
δ ); see Proposition 4.1.

Assuming that Proposition 4.1 holds also when δ = 0 leads immediately to a CLT
(Conjecture 4.1) for XN (τ N ) = ∑∞

i=0 X
N
i (τ N ), and hence for the total number of

individuals that are ultimately infected by the epidemic, since the latter is given by
N − ∑∞

i=0 X
N
i (τ N ). A key step in deriving these CLTs is to consider the following

random time-scale transformation of {W N (t)}; cf. Ethier and Kurtz (1986), page 467,
and Janson et al. (2014), Section 3, where similar transformations are used to derive a
CLT for the final size of the so-called general stochastic epidemic and a LLN for the
Markovian SIR epidemic on an MR random graph, respectively.

For t ∈ [0, τ N ], let

AN (t) =
∫ t

0

Y N
E (u)

XN
E (u) + Y N

E (u) + ZN
E (u)

du,
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and let τ̃ N = AN (τ N ). For 0 ≤ t ≤ τ̃ N , let UN (t) = inf{u ≥ 0 : AN (u) = t} and

W̃
N
(t) = (X̃

N
(t), Ỹ

N
(t), Z̃ N

E (t)) = W N
(
UN (t)

)
.

Then {W̃ N
(t)} = {W̃ N

(t) : 0 ≤ t ≤ τ̃ N } is also a density dependent population
process, having the same set Δ of jumps as {W N (t)}, and intensity functions β̃l
(l ∈ Δ) given by

β̃l (w) = β̃l (x, y, zE ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̃
(1)
i j (x, y, zE ) = βiyi j x j

yE
for l = l(1)i j ∈ Δ1,

β̃
(2)
i j (x, y, zE ) = (β+ω)iyi j y j

yE
for l = l(2)i j ∈ Δ2,

β̃
(3)
i j (x, y, zE ) = ωiyi j x j

yE
for l = l(3)i j ∈ Δ3,

β̃
(4)
i (x, y, zE ) = (β+ω)iyi zE

yE
for l = l(4)i ∈ Δ4,

β̃
(5)
i (x, y, zE ) = γ yi

ηE
yE

for l = l(5)i ∈ Δ5.

(4.1)

Note that when {W N (t)} is in state n = (nX
0 , nX

1 , . . . , nY0 , nY1 , . . . , nZ
E ), the clock in

{W̃ N
(t)} runs at rate (nX

E + nYE + nZ
E )/nYE times faster than the clock in {W N (t)},

so the intensities in (4.1) are obtained by multiplying the corresponding intensities

in (3.7) by ηE/yE . The drift function associated with {W̃ N
(t)} is (cf. (3.8))

F̃(x, y, zE ) =
∞∑

i=0

[−βi xi + ω(−i xi + (i + 1)xi+1)
]
eSi

+
∞∑

i=0

[

(β + ω)(−iyi + (i + 1)yi+1)

(

1 + ηE

yE

)

+β(i + 1)xi+1 − γ yi
ηE

yE

]

eIi

+ [
γ ηE − (β + ω)zE

]
eR. (4.2)

Let {w̃(t) : t ≥ 0} = {(x̃(t), ỹ(t), z̃E (t)) : t ≥ 0} be the solution of the following
system of ODEs, with initial condition w̃(0) = (x(0), y(0), 0):

dx̃i
dt

= − βi x̃i + ω[−i x̃i + (i + 1)x̃i+1], (4.3)

d ỹi
dt

= {(β + ω)[(i + 1)ỹi+1 − i ỹi ] − γ ỹi } 1

ρ̃E (t)

+ (β + ω)[(i + 1)ỹi+1 − i ỹi ] + β(i + 1)x̃i+1, (4.4)

dz̃E
dt

=γ η̃E (t) − (β + ω)z̃E , (4.5)
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where i = 0, 1, . . . and ρ̃E (t) = ỹE (t)/η̃E (t), η̃E (t) = x̃E (t) + ỹE (t) + z̃E (t)
with x̃E (t) = ∑∞

i=1 i x̃i (t) and ỹE (t) = ∑∞
i=1 i ỹi (t). The solution of this system is

considered in Sect. 5.1.1. Let τ̃ = inf{t ≥ 0 : ỹE (t) = 0}. It is shown in Appendix C
that τ̃ < ∞, i.e. the duration of the limiting time-changed deterministic epidemic is
finite, unless γ = ω = p1 − ε1 = 0.

We consider the same sequence of epidemics as for Proposition 3.1 in Sect. 3.Again,

using Ethier and Kurtz (1986), Theorem 11.2.1, as N → ∞, {N−1W̃
N
(t)} converges

almost surely over any finite time interval [0, t0], with t0 < τ̃ , to {w̃(t)} = {w̃(t) :
0 ≤ t ≤ τ̃ } (see Appendix B for further details of this and of the functional CLT given
at (4.6)). Suppose further that the initial conditions satisfy (3.14) and dmax < ∞. Then
it follows using Ethier and Kurtz (1986), Theorem 11.2.3, that, for any t0 ∈ [0, τ̃ ),

√
N
(
{N−1W̃

N
(t) : 0 ≤ t ≤ t0} − {w̃(t) : 0 ≤ t ≤ t0}

)
⇒ {Ṽ (t)} as N → ∞,

(4.6)
where {Ṽ (t) : 0 ≤ t ≤ t0} is a zero-mean Gaussian process with Ṽ (0) = 0 and
variance given by

Σ̃MR(t) = var
(
Ṽ (t)

)
=
∫ t

0
Φ̃(t, s)G̃(w̃(u))Φ̃(t, s)� ds, (4.7)

where
G̃(w̃(u)) =

∑

l∈Δ

l�lβ̃l (w̃(u)) (4.8)

and, for 0 ≤ s ≤ t < ∞, Φ̃(t, s) is the solution of the matrix ODE

∂

∂t
Φ̃(t, u) = ∂ F̃(w̃(t))Φ̃(t, u), Φ̃(u, u) = I . (4.9)

For t ≥ 0, let Ỹ N
E (t) = ∑∞

i=1 i Ỹ
N
i (t). Further, for δ ≥ 0, let

τ̃ N
δ = inf{t ≥ 0 : N−1Ỹ N

E (t) ≤ δ} and τ̃δ = inf{t ≥ 0 : ỹE (t) = δ}, (4.10)

so both τ̃ N
δ and τ̃δ are decreasingwith δ, τ̃ N

0 = τ̃ N and τ̃0 = τ̃ .We show inAppendixC
that τ̃δ < ∞; it is clearlyfinite if τ̃ < ∞. Letϕ(w̃) = ϕ(x̃, ỹ, z̃E ) = ∑∞

i=1 i ỹi (= ỹE ),
so

τ̃ N
δ = inf

{
t ≥ 0 : ϕ

(
N−1W̃

N
(t)
)

≤ δ
}

and τ̃δ = inf{t ≥ 0 : ϕ(w̃(t)) = δ}.

For fixed δ ∈ (0, yE (0)), application of Ethier and Kurtz (1986), Theorem 11.4.2,
yields

√
N
(
N−1W̃

N
(τ̃ N

δ ) − w̃(τ̃δ)
)

D−→ Ṽ (τ̃δ)− ∇ϕ(w̃(τ̃δ)) · Ṽ (τ̃δ)

∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ))
F̃(w̃(τ̃δ))

as N → ∞, (4.11)
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where · denotes inner vector product and D−→ denotes convergence in distribution.
This result requires that

∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ)) < 0, (4.12)

which we show in Appendix C. Condition (4.12) ensures that τ̃δ is a proper crossing
time. Note that

Ṽ (τ̃δ) − ∇ϕ(w̃(τ̃δ)) · Ṽ (τ̃δ)

∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ))
F̃(w̃(τ̃δ)) = Ṽ (τ̃δ)B

�
δ ,

where

Bδ = I − F̃(w̃(τ̃δ))
⊗∇ϕ(w̃(τ̃δ))

∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ))
(4.13)

and
⊗

denotes outer vector product.
The following proposition follows immediately from (4.11) on noting that

W N (τ N
δ ) = W̃

N
(τ̃ N

δ ) and w(τδ) = w̃(τ̃δ), where τδ = inf{t ≥ 0 : yE (t) = δ}.
Proposition 4.1 (CLT for ‘final’ outcome of epidemic on MR graph with dropping)
Suppose that dmax < ∞, εE > 0, δ ∈ (0, yE (0)) and (3.14) is satisfied. Then

√
N
(
N−1W N (τ N

δ ) − w(τδ)
)

D−→ N
(
0,ΣMR,δ

)
as N → ∞, (4.14)

where
ΣMR,δ = BδΣ̃MR(τ̃δ)B

�
δ

and N
(
0,ΣMR,δ

)
denotes a multivariate normal distribution (of appropriate dimen-

sion) with mean vector 0 and variance–covariance matrix ΣMR,δ .

Remark 4.1 (Extending Proposition 4.1 to δ = 0) We are primarily interested in the
case when δ = 0. The difficulty in extending Proposition 4.1 to include δ = 0 is that
to apply Ethier and Kurtz (1986), Theorem 11.4.2, we need the weak convergence

at (4.6) to hold for some t0 > τ̃ . Thus we need to extend the process {W̃ N
(t)} so that

it is defined beyond time τ̃ N . Now ỹE (t) < 0 for t > τ̃ (see (5.11) in Sect. 5.1.1), so

we need to extend the state space of {W̃ N
(t)} so that Ỹ N

i (t) (i = 0, 1, . . . , dmax) can
be negative. However, this cannot be done so that the conditions of the LLN and CLT
theorems in Ethier and Kurtz (1986) are satisified. In particular, in any neighbourhood
of {w : yE = 0}, the intensity functions β̃l (l ∈ Δ) are not bounded and the drift
function F̃ is not Lipschitz continuous.

In work done while this paper was under review, the first author has found a way of
overcoming this problem; see Ball (2018) which is in the setting of an SIR epidemic
(without dropping of edges) with an arbitrary but specified infectious period distribu-
tion on configuration model networks. The theorems proved in Ball (2018) provide
further (very strong) support for Conjecture 4.1 below, which assumes that Proposi-
tion 4.1 extends in the obvious way to include δ = 0, and for subsequent conjectures
which are contingent on Conjecture 4.1. Note that the final outcome of the epidemic

is given by W̃
N
(τ̃ N ) and the corresponding determinsitic outcome is w̃(τ̃ ).
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We use the term final outcome to refer to that of the effective degree formulation,
in which the degrees of susceptibles can change owing to dropping of edges. This is
sufficient to determine the final size of an epidemic. If the final numbers of suscepti-
bles of various original degrees are required, the effective degree formulation can be
extended to keep track of both the original and effective degrees of suceptibles.

Conjecture 4.1 (CLT for final outcome of epidemic on MR graph with dropping)
Suppose that dmax < ∞, εE > 0 and (3.14) is satisfied. Then

√
N
(
N−1W̃

N
(τ̃ N ) − w̃(τ̃ )

)
D−→ N (0,ΣMR) as N → ∞, (4.15)

where
ΣMR = BΣ̃MR(τ̃ )B�

with B given by (4.13) with δ = 0.

Remark 4.2 (LLN for final outcome of SIR epidemic with preventive dropping) Conjec-

ture 4.1 implies that XN (τ N )
p−→ x(∞) as N → ∞, where

p−→ denotes convergence
in probability, i.e. the final outcome of the epidemic on an MR random graph obeys
a weak LLN. The same conjecture holds also for the epidemic on an NSW random
graph, using the theory in Sect. 7. Note that x(∞) = x̃(τ̃ ) and an expression for x̃(τ̃ )

is given in Eq. (5.26) in Sect. 5.3.

Remark 4.3 (Explicit expression for asymptotic variance of final size) Note that
Σ̃MR(t), and hence ΣMR,δ , can be computed numerically as described for Σ(t) in
Remark 3.4. However, as detailed in Sect. 6 for the case δ = 0, it is possible to derive
an almost fully explicit expression, as a function of τ̃δ , for the asymptotic variance
of the ‘final’ number of susceptibles. Moreover, the expression is fully explicit when
ω = 0, i.e. when there is no dropping of edges, so the model reduces to a standard
Markov SIR epidemic on an MR configuration model network.

5 Deterministic temporal behaviour and final size

In Sect. 5.1 we study the deterministic temporal behaviour of the effective degree
model, described by the system of ODEs (3.9)–(3.11) given in Theorem 3.1, by con-
sidering first the corresponding time-transformed system (4.3)–(4.5). The resulting
(partial) solution of this system is required to calculate the asymptotic variance of
the final size in Sects. 6 and 7. Furthermore, the results of this section are used in
Appendix C to prove that the conditions τ̃δ < ∞ and (4.12), required for the applica-
tion of Ethier and Kurtz (1986), Theorem 11.4.2, are satisfied. In Sect. 5.2, we connect
the analysis of (4.3)–(4.5) to other approaches taken in the literature for the determin-
istic analysis of epidemics on configuration model networks. Finally, in Sect. 5.3, we
give a characterization of the deterministic final size of the epidemic and consider
the final size of epidemics initiated by a trace of infection in Proposition 5.1. We do
not consider existence and uniqueness of solutions of the determinstic model when
dmax = ∞ (see Remark 3.3) but indicate where further justification is required for a
proof.
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5.1 Temporal behaviour

5.1.1 Time-transformed process

Consider the system of ODEs given by (4.3)–(4.5), with initial condition x̃(0) =
(p0 − ε0, p1 − ε1, . . .), ỹ(0) = (ε0, ε1, . . .) and z̃E (0) = 0. In this section we
obtain explicit expressions for x̃(t), x̃E (t), ỹE (t) and other variables pertaining to
the fraction of susceptible, infectious, and recovered individuals in the population in
the time-transformed process, while in Sect. 5.1.2 we connect these to corresponding
variables in the real-time process.

Observe that the evolution of {x̃(t)} is decoupled from the rest of the system. To
solve (4.3), let {X(t)} = {X(t) : t ≥ 0} denote a transient continuous-time Markov
chain describing the evolution of a single susceptible individual, whose stubs are
independently dropped at rate ω and independently infected at rate β. For t ≥ 0, let
X(t) be the number of stubs attached to the individual at time t , if it is still susceptible,
otherwise let X(t) = −1. Let p ji (t) = P(X(t) = i |X(0) = j), for i, j = 0, 1, . . .
and t ≥ 0. By deriving the forward equation for {X(t)} it is easily seen that, for
i = 0, 1, . . ., x̃i (t) = ∑∞

j=i x̃ j (0)p ji (t) (t ≥ 0).
It is straightforward to calculate p ji (t), since stubs disappear (by dropping or

infection) independently, the probability that a given initial stub has disappeared by
time t is 1 − e−(β+ω)t and, given that a stub has disappeared, the probability its
disappearance was caused by dropping is pω = ω

β+ω
. Thus,

p ji (t) =
{( j

i

)
e−(β+ω)i t

(
1 − e−(β+ω)t

) j−i
p j−i
ω for j ≥ i,

0 for j < i,
(5.1)

whence, for i = 0, 1, . . .,

x̃i (t) =
∞∑

j=i

x̃ j (0)p ji (t)

=
∞∑

j=i

(p j − ε j )

(
j

i

)

e−(β+ω)i t
(
1 − e−(β+ω)t

) j−i
p j−i
ω

= e−(β+ω)i t

i !
∞∑

j=i

(p j − ε j )
j !

( j − i)!
[
pω

(
1 − e−(β+ω)t

)] j−i

= e−(β+ω)i t

i ! f (i)
Dε

(
pω

(
1 − e−(β+ω)t

))
, (5.2)

where

fDε (s) =
∞∑

k=0

(pk − εk)s
k (0 ≤ s ≤ 1), (5.3)
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and f (i)
Dε

denotes the i th derivative of fDε . It then follows that

x̃E (t) =
∞∑

i=0

ie−(β+ω)i t

i ! f (i)
Dε

(
pω

(
1 − e−(β+ω)t

))

= e−(β+ω)t
∞∑

i=1

e−(β+ω)(i−1)t

(i − 1)! f (i)
Dε

(
pω

(
1 − e−(β+ω)t

))

= e−(β+ω)t f ′
Dε

(
pω

[
1 − e−(β+ω)t

]
+ e−(β+ω)t

)

= e−(β+ω)t f ′
Dε

(ψ(t)) , (5.4)

where
ψ(t) = pω + (1 − pω)e−(β+ω)t . (5.5)

Differentiating (5.4) yields

dx̃E
dt

= −(β + ω)x̃E − βe−2(β+ω)t f ′′
Dε

(ψ(t)) . (5.6)

Note that
∑∞

i=1 i[(i + 1)ỹi+1 − i ỹi ] = −ỹE and, using a similar argument to the
derivation of (5.4),

∞∑

i=1

i(i + 1)x̃i+1(t) = e−2(β+ω)t f ′′
Dε

(ψ(t)) . (5.7)

Multiplying (4.4) by i and summing over i = 1, 2, . . . yields

d ỹE
dt

= −(β + ω + γ )η̃E − (β + ω)ỹE + βe−2(β+ω)t f ′′
Dε

(ψ(t)) . (5.8)

(This requires justifying and further conditions if dmax = ∞. A similar comment
applies to equations contingent on (5.8), such as (5.11).) Adding (5.6), (5.8) and (4.5)
gives

dη̃E

dt
= −2(β + ω)η̃E ,

which, together with the initial condition η̃E (0) = μD , yields

η̃E (t) = μDe
−2(β+ω)t . (5.9)

Substituting (5.9) into (4.5) yields

dz̃E
dt

= γμDe
−2(β+ω)t − (β + ω)z̃E , z̃E (0) = 0,

whence
z̃E (t) = γ

β + ω
μDe

−(β+ω)t
(
1 − e−(β+ω)t

)
. (5.10)
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Thus

ỹE (t) = η̃E (t) − x̃E (t) − z̃E (t)

= e−(β+ω)t
(

β + ω + γ

β + ω
μDe

−(β+ω)t − γ

β + ω
μD − f ′

Dε
(ψ(t))

)

. (5.11)

Remark 5.1 (Fractions of susceptible, infectious, and recovered individuals) Although
the above results are useful for analysing the final outcome of the epidemic, of greater
practical interest is the evolution of the fractions of the population that are susceptible,
infective and recovered individuals, which in the time-transformed process are given
by x̃(t) = ∑∞

i=0 x̃i (t), ỹ(t) = ∑∞
i=0 ỹi (t) and z̃(t) = ∑∞

i=0 z̃i (t), respectively. Sum-
ming (5.2) over i = 0, 1, . . . and using a similar argument to the derivation of (5.4)
yields

x̃(t) = fDε (ψ(t)) . (5.12)

Turning to ỹ(t), summing (4.4) over i = 1, 2, . . . and using (5.4) yields

d ỹ

dt
= − γ

ρ̃E (t)
ỹ + βe−(β+ω)t fDε (ψ(t)) . (5.13)

Let ε = ∑∞
i=0 εi = ỹ(0) and

c(t) =
∫ t

0

1

ρ̃E (u)
du.

Then (5.13) has solution

ỹ(t) = e−γ c(t)ε + β

∫ t

0
e−[(β+ω)u+γ (c(t)−c(u))] fDε (ψ(u)) du. (5.14)

We do not have a closed-form expression for the integral in (5.14), though it is
straightforward to calculate ỹ(t) numerically using the ODE (5.13). Finally, note that
z̃(t) = 1 − x̃(t) − ỹ(t).

5.1.2 Real-time process

Turning to the system of ODEs (3.9)–(3.11), which describe the limiting evolution of
the epidemic as the population size N → ∞, let

ξ(t) =
∫ t

0
ρE (u) du, (5.15)

where ρE is given by (3.12). Then ξ ′(t) = ρE (t) and it follows that, for t ≥ 0,

w(t) = w̃(ξ(t)), (5.16)
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connecting the original process to the time-transformed process. Hence, ξ ′(t) =
ρ̃E (ξ(t)), so (5.11) and (5.9) imply that ξ(t) is determined by

dξ

dt
= 1 + γ

β + ω

(
1 − e(β+ω)ξ

)
− e(β+ω)ξ

f ′
Dε

(ψ(ξ))

μD
, (5.17)

together with ξ(0) = 0. The ODE (5.17) does not seem to admit an explicit solution,
although it is straightforward to solve numerically.

5.2 Connection to other approaches

In this section we consider other deterministic formulations of the preventive dropping
model and make the connection to the effective degree approach (ODE system (3.9)–
(3.11)). Our focus is on the deterministic variable θ(t) that is defined as follows:

θ(t) = F (t) −
∫ t

0

f ′
Dε

(θ(u))

μD
F ′(t − u) du. (5.18)

Here,F (t) is the probability that an individual escapes infection from a given neigh-
bour, up to at least t units of time after the neighbour became infected. In theMarkovian
SIR case with dropping of edges, this probability equals

F (t) = γ + ω

β + γ + ω
+ β

β + γ + ω
e−(β+γ+ω)t . (5.19)

Indeed, there are three competing events: transmission, ending of the infectious period,
and informing the susceptible neighbour, that occur at rates β, γ , and ω, respectively.
We see immediately from the renewal equation for θ , obtained by substituting (5.19)
into (5.18), that one can also interpret dropping of edges as an increased recovery rate
for the deterministic mean temporal behaviour since ω only appears as part of the sum
γ +ω (see Remark 5.3 in Sect. 5.3). This aspect of the mean temporal behaviour may
not be immediately clear from the system (3.9)–(3.11).

The variable θ can be interpreted as the probability that along a randomly chosen
edge between two individuals, i and j say, there is no transmission from j to i before
time t , given that no transmission occurred from individual i to j . The variable θ

formed the basis for the edge-based compartmental models of Volz, Miller and co-
workers (see e.g. Kiss et al. (2017) and references therein). Closely related to edge-
based compartmental models is the binding site formulation presented in Leung and
Diekmann (2016), where the relation to edge-based compartmental models is also
explained. We use the binding site formulation in this section to state the renewal
equation for the variable θ , restricting ourselves to the Markovian SIR epidemic (in
Leung andDiekmann (2016) x̄ is used instead of θ ). In principle, the renewal Eq. (5.18)
is far more general and allows for randomness in infectiousness beyond theMarkovian
setting, see Leung and Diekmann (2016) for details. Note that in the above works,
the derivation of the equations describing the evolution of θ(t) is heuristic. Those
equations are proved for the Markov SIR epidemic on a configuration model network,
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in the sense of a large population limit, in Decreusefond et al. (2012) and Janson et al.
(2014); see also Barbour and Reinert (2013).

The variable θ relates to the effective degree formulation as follows:

θ(t) = pω + (1 − pω)e−(β+ω)ξ(t) = ψ(ξ(t)), (5.20)

where the functions ψ and ξ from the effective degree formulation are defined at (5.5)
and (5.15), respectively. Indeed, Eq. (5.20) is expected from the interpretation of θ :
pω is the probability that the susceptible individual is informed by the infection status
of a given neighbour before being infected by that neighbour, so the stub disappears
through dropping, while (1− pω)e−(β+ω)ξ(t) is the probability that there is no dropping
and the given stub has not disappeared at time ξ(t) (where ξ(t) accounts for the time-
transformation, see (5.16)). One can check that (5.20) holds true by first transforming
the renewal Eq. (5.18) into an ODE for θ by differentiating (and using (5.19)):

dθ

dt
= β

f ′
Dε

(θ)

μD
− (β + γ + ω)θ + γ + ω, (5.21)

with initial condition θ(0) = 1. Next, differentiating the right-hand-side of (5.20),
and using (5.17), we find that ψ(ξ) satisfies the ODE (5.21). Furthermore, the initial
condition ξ(0) = 0 implies that ψ(ξ(0)) = 1.

Finally, theMalthusian parameter r , the basic reproduction number R0 and the final
size of the epidemic are easily derived from the single renewal equation (5.18). Here
we only state the expressions and refer to Leung and Diekmann (2016), Section 2.5,
for details. In the limit of ε ↓ 0 the Euler–Lotka characteristic equation is

1 = − f ′′
D(1)

μD

∫ ∞

0
e−λtF ′(t) dt

=
(

μD − 1 + σ 2
D

μD

)∫ ∞

0
e−λtβe−(β+γ+ω)t dt . (5.22)

The Malthusian parameter r is the unique real root of (5.22) and a simple calculation
yields

r = β

(

μD − 2 + σ 2
D

μD

)

− γ − ω, (5.23)

agreeing with Britton et al. (2016), equation (3). The basic reproduction number R0
is obtained from (5.22) by evaluating the right hand side at λ = 0, yielding the same
expression as (2.1). The final size is discussed in Remark 5.2.

5.3 Final size

Recall that τ̃δ defined at (4.10) satisfies ỹE (τ̃δ) = δ. In particular, using (5.11), τ̃ = τ̃0
satisfies
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β + ω + γ

β + ω
μDe

−(β+ω)τ̃ − γ

β + ω
μD − f ′

Dε
(ψ(τ̃ )) = 0. (5.24)

For later use, we rewrite (5.24) as

[
(β + ω + γ )z − γ

β + ω

]

μD = f ′
Dε

(
ψ̃(z)

)
, (5.25)

where z = e−(β+ω)τ̃ and ψ̃(z) = pω + (1 − pω)z. Further, using (5.12) yields that
the final proportion of the population that remains uninfected is given by

x̃(τ̃ ) = fDε (ψ(τ̃ )) . (5.26)

We let ρ = 1 − x̃(τ̃ ) denote the fraction of the population ultimately infected in the
limiting deterministic epidemic.

Let εE = ∑∞
i=1 iεi . Then in the limit as εE ↓ 0, i.e. for epidemics started by a

trace of infection (or, more precisely, a trace of infected stubs), the final susceptible
fraction is given by (5.26), where τ̃ satisfies

β + ω + γ

β + ω
μDe

−(β+ω)τ̃ − γ

β + ω
μD − f ′

D (ψ(τ̃ )) = 0. (5.27)

We can now formulate the characterization for the final size ρ of the epidemic. We
illustrate the dependence of ρ on the dropping rate ω in Sect. 10.4.

Proposition 5.1 (Deterministic final size) Suppose that dmax < ∞.

(a) Suppose that εE > 0. Then the fraction of the population that is ultimately infected
in the deterministic epidemic is given by

ρ = 1 − fDε (s), (5.28)

where s is the unique solution in [0, 1) of

(β + ω + γ )s − (ω + γ ) = βμ−1
D f ′

Dε
(s). (5.29)

(b) Suppose R0 > 1. Then in the limit as εE ↓ 0, the fraction of the population that is
ultimately infected in the limiting deterministic epidemic is given by

ρ = 1 − fD(s), (5.30)

where s is the unique solution in [0, 1) of

(β + ω + γ )s − (ω + γ ) = βμ−1
D f ′

D(s). (5.31)
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Proof (a) Suppose that εE > 0. Let s = ψ̃(z), so z = (β+ω)s−ω
β

. It then follows
from (5.25) and (5.26) that s satisfies (5.29) and ρ is given by (5.28). Let g1(s) =
(β + ω + γ )s − (ω + γ ) and g2(s) = βμ−1

D f ′
Dε

(s). Then g1(0) ≤ 0 < g2(0) and
g1(1) > g2(1), since f ′

Dε
(1) = ∑∞

i=1 i(pi − εi ) <
∑∞

i=1 i pi = μD . Thus (5.29) has
a unique solution in [0, 1) as g2 is convex on [0, 1], since g′′

2 (s) ≥ 0.
(b) Letting εE ↓ 0 in (5.28) and (5.29) shows that ρ is given by (5.30), where s

satisfies (5.31). Let g1 be as in (a) and g2(s) = βμ−1
D f ′

D(s). Then g1(0) ≤ 0 < g2(0)
and g1(1) = g2(1), since μD = f ′

D(1). Further, g2 is a convex function, so it follows
that (5.31) has a solution in [0, 1) if and only if g′

1(1) < g′
2(1) and moreover that

solution is unique.Now g′
1(1) = β+ω+γ and g′

2(1) = βμ−1
D f ′′

D(1), so g′
1(1) < g′

2(1)

if and only if R0 = β
β+ω+γ

μ−1
D f ′′

D(1) > 1. 	

Remark 5.2 (Connection to the renewal Eq. (5.18)) Proposition 5.1(b) can also be
derived by taking the limit t → ∞ in (5.18):

θ(∞) = F (∞) + (1 − F (∞))
f ′
D(θ(∞))

μD

= γ + ω

β + γ + ω
+ β

β + γ + ω

f ′
D(θ(∞))

μD
, (5.32)

using (5.19), so θ(∞) satisfies (5.31). Then, using (5.12) and (5.16), one obtains that
the proportion x(∞) of the population that ultimately is susceptible agrees with (5.30).

Remark 5.3 (Increased recovery rate and no dropping) Observe that Eq. (5.18) for
θ and (5.19) for F together imply immediately that the process of susceptibles in
the deterministic model with recovery rate γ and dropping rate ω depends on (γ, ω)

only through their sum γ + ω, since γ and ω only appear in (5.19) through the sum
γ +ω. Furthermore, (5.20) relates the variable θ of the binding site formulation to the
effective degree formulation throughψ and ξ defined at (5.5) and (5.15), respectively.
Thus the LLN limit {x(t)} describing the evolution of susceptibles classified by their
effective degree for the model with dropping is the same as that for the model without
dropping (i.e. the standard Markov SIR epidemic on a configuration model network)
but with the recovery rate γ increased to γ + ω. In particular, this implies that the
deterministic final size ρ of the two models are the same, as is apparent immediately
from Proposition 5.1. This invariance also holds for the basic reproduction number
R0 and Mathusian parameter r , as is clear from the formulae in Eqs. (2.1) and (5.23),
respectively. Note however that the LLN limit { y(t)} describing the infectives is not
the same for these two models, since infectives recover more quickly in the model
with increased recovery rate. Thus (as illustrated in Fig. 9 in Sect. 10.6) at any time
t > 0 there are more infectives in the deterministic model with dropping than in the
corresponding model with increased recovery rate and no dropping. We revisit the
model with increased recovery rate and no dropping in Sect. 8, where we focus on the
probability of a major outbreak in the stochastic model with few initial infectives.
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6 Asymptotic variance of final size of epidemic on anMR random
graph

Recall that XN (τ N ) = ∑∞
i=0 X

N
i (τ N ) denotes the number of susceptibles remaining

at the end of the epidemic on an MR random graph. Thus T N
MR = XN (0) − XN (τ N )

denotes the final size of the epidemic. Note that, in an obvious notation, XN (τ N ) =
X̃ N (τ̃ N ) = ∑∞

i=0 X̃
N
i (τ̃ N ). Let 0 = (0, 0, . . .) and 1 = (1, 1, . . .). Then, assuming

the truth of Conjecture 4.1 for dmax = ∞, the asymptotic variance of N− 1
2 T N

MR is
given by

σ 2
MR(β, ω, γ ) = (1, 0, 0)ΣMR,0(1, 0, 0)�. (6.1)

Suppose that εE = ∑∞
i=1 iεi > 0 and let z be the unique solution in [0, 1) of (5.25);

cf. Proposition 5.1(a). The following proposition gives an almost fully explicit expres-
sion for the asymptotic variance σ 2

MR(β, ω, γ ).

Proposition 6.1 (Asymptotic variance of final size of epidemic on MR graph with
dropping) Suppose that εE > 0 and z > 0. Then,

σ 2
MR(β, ω, γ ) = 2

(β + ω + γ )[γ − β − ω − (β + ω + γ )z]
(β + ω)2

μDb̃(z)
2z2(1 − z)

+ γ

β(β + ω)
μDb̃(z)

2z[β − (2β + ω)z]

+ γ

β[2(β + ω) + γ ] b̃(z)
2z2

[
β(σ 2

D + μ2
D) + ωμD

]

− γ [(β + ω + γ )z − γ ]z
[2(β + ω) + γ ](β + ω)

μDb̃(z) + IA + IB + IC + ID, (6.2)

with

b̃(z) =
β
[

(β+ω+γ )z−γ
β+ω

]
μD

z
[
β f ′′

Dε

(
ψ̃(z)

)− (β + ω + γ )μD

] , (6.3)

IA = 1

β + ω

∫ 1

z

[
ω
(
ψ̃3(z, v) − 1

)2 + βψ̃3(z, v)2
]
f ′
Dε

(
ψ̃2(z, v)

)
dv, (6.4)

IB = 2
ωzb̃(z)

β + ω

∫ 1

z
ψ̃1(z, v)

(
ψ̃1(z, v) − 1

) (
1 − ψ̃3(z, v)

)
f ′′
Dε

(
ψ̃2(z, v)

)
dv,

(6.5)

IC = βzb̃(z)

β + ω

∫ 1

z
ψ̃1(z, v)2

(
b̃(z)zv−1 − 2ψ̃3(z, v)

)
f ′′
Dε

(
ψ̃2(z, v)

)
dv, (6.6)

ID = z2b̃(z)2

β + ω

∫ 1

z

[
ω
(
ψ̃1(z, v) − 1

)2 + βψ̃1(z, v)2
]
ψ̃1(z, v)2 f (3)

Dε

(
ψ̃2(z, v)

)
dv,

(6.7)
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ψ̃1(z, v) = pω + (1− pω)zv−1, ψ̃2(z, v) = vψ̃1(z, v)2 + pω(1− v) and ψ̃3(z, v) =
ψ̃1(z, v) − b̃(z)zv−1.

Proof The proof is rather long so only an outline is given here, with detailed calcula-
tions deferred to appendices. Let

c(τ̃ , u) = (1, 0, 0)BΦ̃(τ̃ , u), (6.8)

where B is given by (4.13) with δ = 0. Then, using (4.7) and (4.8),

σ 2
MR(β, ω, γ ) =

∫ τ̃

0
c(τ̃ , u)G̃(w̃(u))c(τ̃ , u)� du,

=
∑

l∈Δ

∫ τ̃

0
c(τ̃ , u)l�l c(τ̃ , u)�β̃l (w̃(u)) du. (6.9)

The rest of the proof involves showing that the right-hand side of (6.9) yields the
expression (6.2) for σ 2

MR(β, ω, γ ).
Recall that Δ = ∪5

k=1Δk and note that c(τ̃ , u)l� is a scalar. It then follows that

σ 2
MR(β, ω, γ ) =

5∑

i=1

σ 2
i , (6.10)

where

σ 2
i =

∫ τ̃

0

∑

l∈Δi

(
c(τ̃ , u)l�

)2
β̃l (w̃(u)) du. (6.11)

Evaluation of (6.11) requires c(τ̃ , u), which we now determine.
Let a(τ̃ ) = ∇ϕ(w̃(τ̃ )) · F̃(w̃(τ̃ )). Observe that ∇ϕ(w̃(τ̃ )) = (0, p, 0), where

p = (0, 1, 2, . . .), so using (4.2),

a(τ̃ ) = −(β + ω)[ỹE (τ̃ ) + η̃E (τ̃ )] − γ η̃E (τ̃ ) + β

∞∑

i=1

i(i + 1)x̃i+1(τ̃ ) (6.12)

= e−2(β+ω)τ̃
[
β f ′′

Dε
(ψ(τ̃ )) − (β + ω + γ )μD

]
, (6.13)

using ỹE (τ̃ ) = 0, (5.7) and (5.9). Also, using (4.2), (1, 0, 0)F̃(w̃(τ̃ )) = −β x̃E (τ̃ ), so

(1, 0, 0)B = (1, b(τ̃ ) p, 0), (6.14)

where
b(τ̃ ) = a(τ̃ )−1β x̃E (τ̃ ). (6.15)
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Note from (4.2) that ∂ F̃(w̃(t)) takes the partitioned form

∂ F̃(w̃(t)) =
⎡

⎣
∂ F̃X X (w̃(t)) 0 0�
∂ F̃Y X (w̃(t)) ∂ F̃YY (w̃(t)) ∂ F̃Y Z (w̃(t))
∂ F̃Z X (w̃(t)) ∂ F̃ZY (w̃(t)) ∂ F̃Z Z (w̃(t))

⎤

⎦ . (6.16)

It follows from (4.9) that Φ̃(t, u) has the partitioned form

Φ̃(t, u) =
⎡

⎣
Φ̃XX (t, u) 0 0�
Φ̃Y X (t, u) Φ̃YY (t, u) Φ̃Y Z (t, u)

Φ̃Z X (t, u) Φ̃ZY (t, u) Φ̃Z Z (t, u)

⎤

⎦ .

Thus, using (6.8) and (6.14), we have

c(τ̃ , u) =
(
1Φ̃XX (τ̃ , u) + b(τ̃ ) pΦ̃Y X (τ̃ , u), b(τ̃ ) pΦ̃YY (τ̃ , u), b(τ̃ ) pΦ̃Y Z (τ̃ , u)

)
.

We show in Appendix D that

(
1Φ̃XX (τ̃ , u)

)

j
= ψ(τ̃ − u) j ( j = 0, 1, . . .),

(
p Φ̃Y X (τ̃ , u)

)

j
= e−(β+ω)(τ̃−u) j

[
(β + ω + γ )e−(β+ω)(τ̃−u) − γ

β + ω

]

− e−(β+ω)(τ̃−u) jψ(τ̃ − u) j−1 ( j = 0, 1, . . .),

p Φ̃YY (τ̃ , u) =
(

β + ω + γ

β + ω
e−2(β+ω)(τ̃−u) − γ

β + ω
e−(β+ω)(τ̃−u)

)

p,

p Φ̃Y Z (τ̃ , u) = −β + ω + γ

β + ω
e−(β+ω)(τ̃−u)

(
1 − e−(β+ω)(τ̃−u)

)
,

see (D.5), (D.26), (D.15) and (D.14), respectively. Hence,

c(τ̃ , u) = (cS(τ̃ , u), hI (τ̃ , u) p, hR(τ̃ , u)) , (6.17)

where

hI (τ̃ , u) = − b(τ̃ )

β + ω
e−(β+ω)(τ̃−u)

[
γ − (β + ω + γ )e−(β+ω)(τ̃−u)

]
, (6.18)

hR(τ̃ , u) = hI (τ̃ , u) − b(τ̃ )e−(β+ω)(τ̃−u), (6.19)

cS(τ̃ , u) = (c̃0(τ̃ , u), c̃1(τ̃ , u), . . .) + hI (τ̃ , u) p, (6.20)

with

c̃ j (τ̃ , u) = ψ(τ̃ − u) j − b(τ̃ )e−(β+ω)(τ̃−u) jψ(τ̃ − u) j−1 ( j = 0, 1, . . .).
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We can now calculate σ 2
i (i = 1, 2, . . . , 5) using (6.11), (6.17) and (4.1), and hence

obtain σ 2
MR(β, ω, γ ) using (6.10). The details are lengthy and are given inAppendix E.

	

Recall from Sect. 5.3 that if εE > 0 then ρ = 1− fDε

(
ψ̃(z)

)
, where z is the unique

solution in [0, 1) of (5.25), and if εE = 0 and R0 > 1 then ρ = 1− fD
(
ψ̃(z)

)
, where

z is the unique solution in [0, 1) of (5.25) with f ′
Dε

replaced by f ′
D; cf. Proposition 5.1.

Conjecture 6.1 (CLT for of final size of epidemic on MR graph with dropping)

(a) Suppose that εE > 0, dmax < ∞ and z > 0. Then,

√
N
(
N−1T N

MR − ρ
)

D−→ N (0, σ 2
MR(β, ω, γ )) as N → ∞, (6.21)

where σ 2
MR(β, ω, γ ) is given by Proposition 6.1.

(b) Suppose that εE = 0, dmax < ∞, R0 > 1 and z > 0. Then, in the event of a
major outbreak, (6.21) holds with Dε replaced by D in (6.3)–(6.7).

Remark 6.1 (Proving Conjecture 6.1) Part (a) of Conjecture 6.1 follows immediately
fromConjecture 4.1 and Proposition 6.1; see Remark 4.1 for howConjecture 4.1might
be proved. Part (b) of Conjecture 6.1 is concerned with epidemics started by a trace
of infection, i.e. with εE = 0. Similar CLTs for the final size of a wide range of SIR
epidemics (e.g. von Bahr and Martin-Löf (1980), Scalia-Tomba (1985) and Ball and
Neal (2003)) suggest that letting εE ↓ 0 in the CLT with εE > 0 yields the correct
CLTwhen εE = 0 for epidemics that become established and lead to amajor outbreak.
This is proved for the SIR epidemic without dropping of edges on configuration model
networks in Ball (2018); see Remark 4.1. A similar proof should hold for the present
model with dropping of edges.

Remark 6.2 (The condition z > 0) The condition z > 0 in Proposition 6.1 and Con-
jecture 6.1 is required to ensure that τ̃ < ∞; recall from Sect. 5.3 that z = e−(β+ω)τ̃ .
Note from (5.28) that z > 0 implies ρ < 1, so the LLN and functional CLT in Ethier
and Kurtz (1986), Chapter 11, hold for both the original and random time-scale trans-

formed processes {W N (t)} and {W̃ N
(t)} provided there is a maximum degree; see

Appendix B. Further, as explained in Appendix C, if εE > 0 then z = 0 if and only
if γ = ω = f ′

Dε
(0) = 0. Now f ′

Dε
(0) = 0 if and only if p1 − ε1 = 0. Thus z > 0

unless there is no recovery of infectives, no droping of edges and the limiting fraction
of degree-1 susceptibles is 0. The same conclusion holds when εE = 0.

7 Extension to iid degrees: epidemics on an NSW random graph

In this section we assume that the underlying network is constructed from a sequence
D1, D2, . . . of independent and identically distributed copies of the random vari-
able D, which describes the degree of a typical individual. The random variables
D1, D2, . . . , DN are used to construct a network of N individuals, yielding a real-
isation of NSW random graph. The almost sure convergence results described in
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Theorem 3.1 (and the corresponding time-transformed almost sure convergence result
of Sect. 4) still hold for the present model, as noted previously, but the functional CLT
and the CLT for the final size (Theorem 3.2 and Conjecture 6.1) needmodifying, as the
variability in the empirical degree distribution of the random network (and hence in
the initial conditions for the effective degree process {W N (t)}) is of the same order of
magnitude as that of the process itself. The modified results for epidemics on an NSW
random graph are presented in Theorem 7.2 and Conjecture 7.1. In order to prove and
motivate, respectively, these results we need a version of the functional CLT (Theo-
rem 11.2.3) in Ethier and Kurtz (1986) that allows for asymptotically random initial
conditions; see Theorem 7.1 below, which may be of more general interest beyond
the present paper. Like the above-mentioned Theorem 11.2.3, Theorem 7.1 assumes
a finite-dimensional state space, which for our application amounts to assuming that
dmax < ∞.

The limiting Gaussian process {V (t)} in Theorem 3.2 admits the Itô integral rep-
resentation

V (t) = Φ(t, 0)V (0) +
∫ t

0
Φ(t, s) dU(s) (t ≥ 0), (7.1)

where {U(t)} is a time-inhomogeneousBrownianmotion (see Ethier andKurtz (1986),
Theorem 11.2.3, page 458) and V (0) = limN→∞

√
N
(
W N (0) − w(0)

)
. (To aid

connection with Ethier and Kurtz (1986), V (t) and U(t) are now column vectors.) In
Ethier and Kurtz (1986), Theorem 11.2.3, V (0) is nonrandom. In Theorem 7.1 below,
we allow V (0) to be random.

Theorem 7.1 (Functional CLT for process with asymptotically random initial con-
ditions) Suppose that the conditions of Ethier and Kurtz (1986), Theorem 11.2.3,

are satisfied except that
√
N
(
N−1W N (0) − w(0)

) D−→ V (0) as N → ∞, where
V (0) ∼ N (0,Σ0). Then

√
N
(
{N−1W N (t)} − {w(t)}

)
⇒ {V (t)} as N → ∞, (7.2)

where {V (t)} = {V (t) : t ≥ 0} is a zero-mean Gaussian process with covariance
function given, for t1, t2 ≥ 0, by

cov (V (t1), V (t2)) = Φ(t1, 0)Σ0Φ(t2, 0)
� +

∫ min(t1,t2)

0
Φ(t1, u)G(w(u))Φ(t2, u)� du.

(7.3)

Proof It is easily seen that the proof of Ethier and Kurtz (1986), Theorem 11.2.3,
continues to hold in this more general setting. In particular, the limiting process satis-
fies (7.1), where now V (0) ∼ N (0,Σ0), so {V (t)} is a zero-mean Gaussian process.
Further, the time-inhomogeneous Brownian motion {U(t)} arises as the weak limit, as
N → ∞, of the (suitably centred and scaled) Poisson processes used to construct reali-
sations of {W N (t)} (N = 1, 2, . . .), and hence is independent of V (0). The covariance
function in (7.3) then follows immediately from (7.1). 	
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Remark 7.1 (Computing the asymptotic variance) Setting t1 = t2 = t in (7.3) and
differentiating as in Remark 3.4 shows thatΣ(t) = var(V (t)) satisfies the ODE (3.17)
but now with initial condition Σ(0) = Σ0.

Remark 7.2 (Non-Gaussian limiting initial conditions) The covariance function (7.3)
also holds when V (0) is non-Gaussian, provided E[V (0)] = 0 and var(V (0)) = Σ0,
though of course {V (t)} is no longer Gaussian.

Theorem 7.2 (Functional CLT for epidemic on NSW graph with dropping)

Suppose that as N → ∞,
(
N−1(XN (0),Y N (0), ZN

E (0)) − (x(0), y(0), zE (0))
) D−→

N (0,Σ0). Then the same functional CLT holds as in the MR graph situation (The-
orem 3.2), but with the covariance function of {V (t)} changed in accordance with
Eq. (7.3) and Remark 7.1 to reflect the randomness in the initial conditions.

Proof The details of the proof, applying Theorem 7.1, are exactly the same as those
in Appendix B where Theorem 11.2.3 of Ethier and Kurtz (1986) is applied to prove
Theorem 3.2.

Remark 7.3 (Theasymptotic variancematrixΣ0)Note thatΣ0 inTheorem7.2depends
on how the initial infectives are chosen from the population. An example and some
discussion can be found in Sect. 10.1. Also note that Theorem 7.2 as presented allows
for the possibility of some initially recovered individuals in the population. This is
to simplify the presentation of the theorem; the assumption of no initially recovered
individuals implies that ZN

E (0) = 0, from which it follows that zE (0) = 0 and the last
row and column of Σ0 have all entries 0.

Next, we use Theorem 7.1 to conjecture a CLT for the final size of the epidemic
on an NSW random graph. For N = 1, 2, . . ., let D(N ) denote a random variable with
distribution given by the empirical distribution of D1, D2, . . . , DN , so

P
(
D(N ) = k

)
= N−1

N∑

i=1

1{Di=k} (k = 0, 1, . . .). (7.4)

For N = 1, 2, . . ., let T N
NSW be the final size of the epidemic on an NSW configuration

model random graph having N vertices. We consider epidemics initiated by a trace of
infection and assume that the variability in the initial conditions is owing entirely to
the variability in D(N ).

Conjecture 7.1 (CLT for final size of epidemic on NSW graph with dropping)
Suppose that εE = 0, dmax < ∞, R0 > 1 and z > 0. Then, in the event of a major
outbreak,

√
N
(
N−1T N

NSW − ρ
)

D−→ N (0, σ 2
NSW(β, ω, γ )) as N → ∞, (7.5)

where
σ 2
NSW(β, ω, γ ) = σ 2

MR(β, ω, γ ) + σ 2
0 (β, ω, γ ), (7.6)
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with σ 2
MR(β, ω, γ ) given by (6.2) (replacing Dε by D in (6.3)–(6.7)) and

σ 2
0 (β, ω, γ )

= fD
(
ψ̃(z)2

)− (1 − ρ)2 + b̃(z)2ψ̃(z)2z2 f ′′
D

(
ψ̃(z)2

)

+ b̃(z) f ′
D

(
ψ̃(z)2

)
z
[
zb̃(z) − 2ψ̃(z)

]

+ b̃(z)2z2
(

(β + ω + γ )z − γ

β + ω

)2 (
σ 2
D + μ2

D

)

− 2b̃(z)2z2μD

(
(β + ω + γ )z − γ

β + ω

)[
(β + ω + γ )z − γ

β + ω
+ (β + ω + γ )

β
ψ̃(z)

]

.

(7.7)

We now give the argument leading to this conjecture. Suppose, for the time being,

that εE > 0 and consider the random time-scale transformed process {W̃ N
(t)}, defined

in Sect. 4, but now for the epidemic on anNSWnetwork. Using (4.6) and Theorem 7.1,
for any t0 ∈ [0, τ̃ ),

√
N
(
{N−1W̃

N
(t) : 0 ≤ t ≤ t0} − {w̃(t) : 0 ≤ t ≤ t0}

)
⇒ {ṼNSW(t)} as N → ∞,

where {ṼNSW(t) : 0 ≤ t ≤ t0} is a zero-mean Gaussian process with variance–
covariance matrix at time t given by

Σ̃NSW(t) = Σ̃MR(t) + Σ̃0(t); (7.8)

Σ̃MR(t) is given by (4.7) and Σ̃0(t) = Φ(t, 0)Σ0Φ(t, 0)�, with Σ0 being defined as
in Theorem 7.1. Then arguing as in the derivation of Proposition 4.1 yields, for any
δ ∈ (0, yE (0)),

√
N
(
N−1W N (τ N

δ ) − w(τδ)
)

D−→ N
(
0,ΣNSW,δ

)
, as N → ∞, (7.9)

where
ΣNSW,δ = BδΣ̃NSW(τ̃δ)B

�
δ . (7.10)

We now assume that (7.9) extends to the case δ = 0, so (7.5) holds with

σ 2
NSW(β, ω, γ ) = (1, 0, 0)ΣNSW,0(1, 0, 0)�;

cf. (6.1). Thus, using (7.8) and (7.10),

σ 2
NSW(β, ω, γ ) = σ 2

MR(β, ω, γ ) + σ 2
0 (β, ω, γ ), (7.11)
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where

σ 2
0 (β, ω, γ ) = (1, 0, 0)BΣ̃0(τ̃ )B�(1, 0, 0)�

= (1, b(τ̃ ) p, 0)Σ̃0(τ̃ )(1, b(τ̃ ) p, 0)�, (7.12)

using (6.14).
We now assume that the above extends in the obvious way to εE = 0 and calculate

the resulting asymptotic variance σ 2
NSW(β, ω, γ ). Write

Σ̃0(τ̃ ) =

⎡

⎢
⎢
⎣

Σ̃0
XX (τ̃ ) Σ̃0

XY (τ̃ ) Σ̃0
XZ (τ̃ )

Σ̃0
Y X (τ̃ ) Σ̃0

YY (τ̃ ) Σ̃0
Y Z (τ̃ )

Σ̃0
Z X (τ̃ ) Σ̃0

ZY (τ̃ ) Σ̃0
Z Z (τ̃ )

⎤

⎥
⎥
⎦ . (7.13)

Then

σ 2
0 (β, ω, γ ) = 1Σ̃0

XX (τ̃ )1� + 2b(τ̃ ) pΣ̃0
Y X (τ̃ )1� + b(τ̃ )2 pΣ̃0

YY (τ̃ ) p�

= lim
N→∞ N

[
var

(
x̃ N (τ̃ )

)
+ 2b(τ̃ )cov

(
x̃ N (τ̃ ), ỹNE (τ̃ )

)
+ b(τ̃ )2var

(
ỹNE (τ̃ )

)]
,

(7.14)

where x̃ N (τ̃ ) and ỹNE (τ̃ ) are the deterministic ‘number’ of susceptible individuals
and infectious half-edges, given by (5.26) and (5.11), respectively, but with (random)
initial conditions induced by the NSW random graph on N vertices.

Recall the function ψ and the random variable D(N ), defined at (5.5) and (7.4),
respectively. It follows from (5.26) that

x̃ N (τ̃ ) = fD(N ) (ψ(τ̃ )) (7.15)

and, from (5.11), that

ỹNE (τ̃ ) = β + ω + γ

β + ω
μD(N )e−2(β+ω)τ̃ − γ

β + ω
μD(N )e−(β+ω)τ̃ − e−(β+ω)τ̃ f ′

D(N ) (ψ(τ̃ )) .

(7.16)
Let θ ∈ [0, 1]. Note, for example, that fD(N ) (θ) = N−1∑N

i=1 θDi , so
var

(
fD(N ) (θ)

) = N−1
[
fD(θ2) − fD(θ)2

]
and fD(N ) (θ) is asymptotically normally

distributed by the CLT for independent and identically distributed random variables.
This and similar elementary calculations show that

lim
N→∞ Nvar

(
fD(N ) (θ)

) = fD(θ2) − fD(θ)2, (7.17)

lim
N→∞ Nvar

(
μD(N )

) = σ 2
D(= var(D)), (7.18)

lim
N→∞ Nvar

(
f ′
D(N ) (θ)

) = θ2 f ′′
D(θ2) + f ′

D(θ2) − f ′
D(θ)2, (7.19)

lim
N→∞ Ncov

(
μD(N ) , fD(N ) (θ)

) = θ f ′
D(θ) − μD fD(θ), (7.20)
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lim
N→∞ Ncov

(
μD(N ) , f ′

D(N ) (θ)
) = θ f ′′

D(θ) + f ′
D(θ) − μD f ′

D(θ), (7.21)

lim
N→∞ Ncov

(
fD(N ) (θ), f ′

D(N ) (θ)
) = θ f ′

D(θ2) − fD(θ) f ′
D(θ). (7.22)

Recall that z = e−(β+ω)τ̃ , ψ̃(z) = pω + (1 − pω)z and ρ = 1 − fD
(
ψ̃(z)

)

(see (5.25) and Proposition 5.1(b)). Setting δ = 0 in (5.27) then gives (cf. (5.25))

f ′
D

(
ψ̃(z)

) =
[
(β + ω + γ )z − γ

β + ω

]

μD. (7.23)

Then, using (7.15) and (7.17),

lim
N→∞ Nvar

(
x̃ N (τ̃ )

)
= fD

(
ψ̃(z)2

)
− (1 − ρ)2, (7.24)

using (7.15), (7.16), (7.20) and (7.22)

lim
N→∞ Ncov

(
x̃ N (τ̃ ), ỹNE (τ̃ )

)
= zψ̃(z)

[(

z + γ

β + ω
(z − 1)

)2

μD − f ′
D

(
ψ̃(z)2

)
]

(7.25)
and

lim
N→∞ Nvar

(
ỹNE (τ̃ )

)
= z2

[(

z + γ

β + ω
(z − 1)

)2 (
σ 2
D + μ2

D − 2μD

)

+ ψ̃(z)2 f ′′
D

(
ψ̃(z)2

)
+ f ′

D

(
ψ̃(z)2

)

− 2

(

z + γ

β + ω
(z − 1)

)

ψ̃(z) f ′′
D

(
ψ̃(z)

)
]

. (7.26)

It follows from (5.4), (6.13), (6.15) (all with Dε replaced by D) and (7.23), that

b(τ̃ ) =
β
[

(β+ω+γ )z−γ
β+ω

]
μD

z
[
β f ′′

D

(
ψ̃(z)

)− (β + ω + γ )μD
] , (7.27)

so

b(τ̃ )z f ′′
D

(
ψ̃(z)

) =
[

(β + ω + γ )

(
1

β + ω
+ b(τ̃ )

β

)

z − γ

β + ω

]

μD (7.28)

Note that b(τ̃ ) = b̃(z), where b̃(z) is given by (6.3) with Dε replaced by D. Substitut-
ing (7.24), (7.25) and (7.26) into (7.14), and invoking (7.23) and (7.28), yields (7.7)
after a little algebra.

Remark 7.4 (Proving Conjecture 7.1) The two remaining steps required to prove Con-
jecture 7.1 are to justify (i) that (7.9) holds when δ = 0 and (ii) letting εE ↓ 0 to obtain
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a CLT in the event of a major outbreak; cf. Remarks 4.1 and 6.1 which discuss these
steps, respectively, for an epidemic on a MR random graph. As for epidemics on MR
random graphs, the proofs in Ball (2018) for the SIR epidemic without dropping of
edges on an NSW random graph should extend to the model with dropping of edges.

Remark 7.5 (Conjecture 7.1 with εE > 0) It is possible to extend Conjecture 7.1 to
consider also the case εE > 0 and obtain an analogous result to Conjecture 6.1(a).
The asymptotic variance σ 2

NSW(β, ω, γ ) is given by (7.11) and (7.12) but now Σ̃0(τ̃ )

depends on how the initial infectives are chosen.

8 Increased recovery rate instead of dropping edges

Recall the equivalent formulation of the model with dropping in which an infectious
individual sends out warnings to each neighbour independently at rate ω, and sus-
ceptible individuals who receive such a warning immediately drop the corresponding
edge. Consider a different but related model where, instead of sending out warnings to
each neighbour at rate ω independently, one single warning (at rate ω) is used for all
neighbours simultaneously (and all of them immediately drop the edges). The effect
of this change is that edge droppings become dependent. However, from the point of
view of a given susceptible neighbour the probability that it drops its edge to a given
infective is unchanged. Thus, for a given susceptible, such a warning (where all sus-
ceptible neighbours drop their edges) has the same effect as if its infective neighbour
recovered. Hence, we consider a model without dropping, but with recovery rate γ +ω

instead of γ . We use (γ, ω) and (γ + ω, 0) to refer to the two models, where the first
component refers to the recovery rate and the second component to the dropping rate.

The above reasoning suggests that the dropping model (γ, ω) should in some ways
resemble this modified (γ + ω, 0) model. In fact, we have seen already in Sect. 5.3
(Remark 5.3) that, as N → ∞, the scaled process of susceptibles in the two epidemics
converge to the same LLN limit, and the same LLN holds for the final fraction getting
infected. However, the two models are stochastically different, even for the process
of susceptibles. The underlying reason for this difference is that independent warning
signals makes the total number of infections less variable compared to having one
warning signal to all susceptible neighbours. Consequently, the probability of a major
outbreak is greater in the dropping model (γ, ω) than in the modified (γ + ω, 0)
model, as we prove in Theorem 8.1 below. Furthermore, we expect that the decrease
in variability of the number of infections made by an infective decreases the limiting
variance of both the whole process of susceptibles and the final size in the event of a
major outbreak compared to the modified (γ + ω, 0) model. This is illustrated by the
numerical results in Sect. 10.6.

Consider the beginning of an outbreak and an infectious individual having k sus-
ceptible neighbours. Let Y (γ,ω)

k be the number of these k neighbours that the infectious

individual infects in the droppingmodel and define Y (γ+ω,0)
k similarly for themodified

model. We compute the distributions of these two offspring random variables.
In the (γ, ω) model we first condition on the infectious period I , which has an

Exp(γ ) distribution, i.e. an exponential distribution with rate γ and hence mean γ −1.
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Given the duration of the infectious period I = t , the infectious individual infects
each of its k susceptible neighbours independently, and a given neighbour is infected
if and only if there is an infectious contact before t and the edge has not been dropped
before then. Thus, conditional upon I = t , the probability that the given neighbour is
infected is ∫ t

0
βe−(β+ω)s ds = β

β + ω

(
1 − e−(β+ω)t

)
.

Given I = t , the number of neighbours infected follows a binomial distribution with
parameters k and the probability above. Hence, if we relax the conditioning, it follows
that Y (γ,ω)

k has the mixed-Binomial distribution

Y (γ,ω)

k ∼ MixBin

(

k,
β

β + ω

(
1 − e−(β+ω)I

))

, where I ∼ Exp(γ ). (8.1)

Setting γ = γ + ω and ω = 0 yields immediately that

Y (γ+ω,0)
k ∼ MixBin

(
k, 1 − e−β I ∗)

, where I ∗ ∼ Exp(γ + ω). (8.2)

It is not hard to show that

E
[
Y (γ,ω)

k

]
= E

[
Y (γ+ω,0)
k

]
= k

β

β + γ + ω
, (8.3)

and that var
(
Y (γ,ω)

k

)
< var

(
Y (γ+ω,0)
k

)
.

Suppose that the epidemic is initiated by a single individual, chosen uniformly at
random from the entire population, becoming infective. Then the number of suscep-
tible neighbours of the initial infective is distributed according to D and, during the
early stages of an outbreak in a large population, the number of susceptible neighbours
of a subsequently infected individual is distributed as D̃−1 (see Sect. 2). These results
hold for both models. It follows that the early stages of the dropping model in a large
population can be approximated, on a generation basis, by a Galton–Watson branching
process having offspring distribution that is a mixture of Y (γ,ω)

k , k = 0, 1, . . ., with
mixing probabilities pk, k = 0, 1, . . . , in the initial generation and mixing probabil-
ities p̃k, k = 0, 1, . . . , in all subsequent generations, where p̃k = μ−1

D (k + 1)pk+1.
(Note that p̃k , k = 0, 1, . . ., is the probability mass function of D̃ − 1.) A similar
approximation holds for the modified model, except Y (γ,ω)

k is replaced by Y (γ+ω,0)
k .

These approximations can bemade rigorous in the limit as the population size N → ∞
by using a coupling argument, as in e.g. Ball and Sirl (2012). In the limit as N → ∞,
the probability of a major outbreak in the epidemic model is given by the probability
that the corresponding approximating branching process does not go extinct.

The following lemma, proved in Appendix F, is required for the proof of Theo-
rem 8.1 below, which shows that the probability of a major outbreak is greater in the
dropping model than in the corresponding modified model. First, some more nota-

tion is required. For k = 1, 2, . . . let f (γ,ω)

k (s) = E
[
sY

(γ,ω)
k

]
, s ∈ R, denote the
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probability-generating function (PGF) of Y (γ,ω)

k , the number of neighbours that an
infectious individual with k susceptible neighbours infects in the early stages of the
(γ, ω) dropping model, and define f (γ+ω)

k (s) similarly for the (γ + ω, 0) modified

model. Let f (γ,ω)
0 (s) = f (γ+ω)

0 (s) = 1 (s ∈ R). Then, for the dropping model, the

approximating branching process has offspring PGF f (γ,ω)(s) = ∑∞
k=0 pk f

(γ,ω)

k (s)

in the first generation and offspring PGF f̃ (γ,ω)(s) = ∑∞
k=0 p̃k f

(γ,ω)

k (s) in all subse-
quent generations, with analogous results holding for the (γ + ω, 0) model.

Lemma 1 Suppose that β > 0 and γ > 0. Then, for k = 0, 1, . . .,

f (γ,ω)

k (s) ≤ f (γ+ω)

k (s) (0 ≤ s ≤ 1), (8.4)

with strict inequality for all s ∈ [0, 1) when k ≥ 2.

Theorem 8.1 (Probability of a major outbreak)

(a) The basic reproduction number R0 for both the dropping and modified models is
given by (2.1).

(b) Suppose that R0 > 1 and the epidemic is initiated by a single infective individ-
ual, chosen uniformly at random from the population. Then the probability of a
major outbreak p(γ,ω)

maj for the (γ, ω) dropping model is strictly greater than the

probability of a major outbreak p(γ+ω,0)
maj for the modified (γ + ω, 0) model, i.e.

p(γ,ω)
maj > p(γ+ω,0)

maj . (8.5)

Proof The basic reproduction number is given by the offspring mean of a typical
(i.e. non-initial generation) infective, so for both models, using (8.3),

R0 =
∞∑

i=1

p̃kk
β

β + γ + ω
= β

β + γ + ω

(

μD + σ 2
D

μD
− 1

)

,

which proves part (a).
Turning to part (b), suppose that R0 > 1. Then, using standard branching process

theory gives that, for the dropping model, the probability of a major outbreak is given
by p(γ,ω)

maj = 1 − f (γ,ω)(σ (γ,ω)), where σ (γ,ω) is the unique solution in [0, 1) of

f̃ (γ,ω)(s) = s; cf. Kenah and Robins (2007) and Ball and Sirl (2013). Analogously,
for the modified model, p(γ+ω,0)

maj = 1 − f (γ+ω,0)(σ (γ+ω,0)), where σ (γ+ω,0) is the

unique solution in [0, 1) of f̃ (γ+ω,0)(s) = s.
Note that if P(D ≥ 3) = 0 then R0 ≤ 1, so R0 > 1 implies that P(D ≥ 3) > 0.

It then follows immediately from Lemma 1 that f (γ,ω)(s) < f (γ+ω,0)(s) and
f̃ (γ,ω)(s) < f̃ (γ+ω,0)(s) for all s ∈ [0, 1). Hence, since f̃ (γ,ω)(1) = f̃ (γ+ω,0)(1) = 1
and the derivative of both f̃ (γ,ω) and f̃ (γ+ω,0) at s = 1 is R0 > 1 , it fol-
lows that σ (γ,ω) < σ (γ+ω,0), whence f (γ,ω)(σ (γ,ω)) < f (γ+ω,0)(σ (γ,ω)) <

f (γ+ω,0)(σ (γ+ω,0)), as f (γ+ω,0) is strictly increasing on [0, 1]. Thus we obtain our
statement (8.5). 	
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Remark 8.1 (Other choices for initial infectives) Theorem 8.1 is easily extended to
other assumptions concerning initial infectives; for example, to an epidemic initiated
by k > 1 infective individuals chosen uniformly at random from the population, or to
an epidemic initiated by an infective of a specified degree.

9 No dropping of edges

We use the results from this paper to analyse the Markovian SIR epidemic on a
configuration model network in Sect. 9.1 and the giant component of a configuration
model network in Sect. 9.2. Note that in the case that there is no dropping of edges,
i.e. ω = 0, we are in the setting of a Markovian SIR epidemic on a configuration
model network. We treat the asymptotic variance of the final size for this model in
Conjecture 9.1. If additionally, there is no recovery, i.e. ω = 0 = γ , then in the event
of a major outbreak, all individuals in the giant component eventually get infected. By
using this we can apply the results from this paper to make statements about the size
of the giant component in configuration model random graphs, see Conjecture 9.2.

9.1 SIR epidemic on configuration network

Whenω = 0, themodel reduces to theMarkov SIR epidemic on a configurationmodel
network. The formulae for the asymptotic variance of the final size for the epidemic on
MR and NSW random networks simplify and become fully explicit given z, defined
below.

Recall that εE = ∑∞
i=1 iεi . If εE > 0, then setting ω = 0 in Proposition 5.1(a)

shows that ρ = 1 − fDε (z), where z is the unique solution in [0, 1) of

(β + γ )z − γ = βμ−1
D f ′

Dε
(z). (9.1)

If εE = 0, so the epidemic is started by a trace of infection, and R0 > 1 then, using
Proposition 5.1(b), ρ = 1 − fD(z), where z is the unique solution in [0, 1) of (9.1)
with f ′

Dε
replaced by f ′

D .

Let T N
MRND and T N

NSWND denote the final size of the epidemic, with no dropping
of edges, on an MR and NSW configuration model random network, respectively,
each having N vertices. Let σ 2

MRND(β, γ ) = σ 2
MR(β, 0, γ ) and σ 2

NSWND(β, γ ) =
σ 2
NSW(β, 0, γ ) denote the asymptotic variance of the final size for the epidemic on

an MR and an NSW configuration model random network, respectively. The follow-
ing conjecture gives fully explicit formulae for σ 2

MRND(β, γ ) and σ 2
NSWND(β, γ ) as

functions of z, which are derived in Appendix G.

Conjecture 9.1 (CLT for final size of epidemic on configuration model networks)

(a) For the SIR epidemic on an MR random network,

(i) if εE > 0, dmax < ∞ and z > 0, then,

√
N
(
N−1T N

MRND − ρ
)

D−→ N (0, σ 2
MRND(β, γ )) as N → ∞, (9.2)
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where

σ 2
MRND(β, γ ) =1 − ρ − fDε (z

2) − h(β, γ, z)2
[
f ′
Dε

(z2) + z2 f ′′
Dε

(z2)
]

+ h(β, γ, z)2
[(

γ

2β + γ

)

(σ 2
D + μ2

D)

+2

(
γ − (β + γ )z

β

)2

μD

]

+ 2h(β, γ, z)

[

z f ′
Dε

(z2)

+
(

γ − (β + γ )z

β

)(
β + γ

2β + γ

)

μD

]

,

(9.3)

with

h(β, γ, z) = γ − (β + γ )z

β + γ − βμ−1
D f ′′

Dε
(z)

; (9.4)

(ii) if εE = 0, dmax < ∞, R0 > 1 and z > 0, then, in the event of a major
outbreak, (9.2) holds with ε = 0 and Dε replaced by D in (9.3) and (9.4).

(b) For the epidemic on an NSW network, suppose that εE = 0, dmax < ∞, R0 > 1
and z > 0. Then, in the event of a major outbreak,

√
N
(
N−1T N

NSWND − ρ
)

D−→ N (0, σ 2
NSWND(β, γ )) as N → ∞, (9.5)

where

σ 2
NSWND(β, γ ) = ρ(1 − ρ) + 2h(β, γ, z)

(
γ − (β + γ )z

β

)(
β + γ

2β + γ

)

μD

+ h(β, γ, z)2
[

γ

2β + γ
+
(

γ − (β + γ )z

β

)2
]

(σ 2
D + μ2

D)

+ 2h(β, γ, z)2
(β + γ )[γ − (β + γ )z]

β2 zμD, (9.6)

and h(β, γ, z) is given by (9.4), with Dε replaced by D.

Remark 9.1 (Proof of Conjecture 9.1) Although only conjectured here, Conjecture 9.1
(andhence alsoConjecture 9.2 below) followas a special case ofBall (2018),Theorems
2.1 and 2.2.

Remark 9.2 (Epidemics on NSW random network with εE > 0) As for the model
with dropping, Conjecture 9.1(b) can be extended to include the case εE > 0; the
asymptotic variance σ 2

NSWND(β, γ ) then depends on how the initial infectives are
chosen (cf. Remark 7.5).
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9.2 Configurationmodel giant component

If ω = γ = 0 then the epidemic ultimately infects all individuals in all components
of the random network that contain at least one initial infective. Thus, under suitable
conditions, in the limit as ε ↓ 0, setting γ = 0 in Conjecture 9.1(a)(ii) and (b) leads
to CLTs for the size of the largest connected (i.e. giant) component in MR and NSW
configuration model random graphs, respectively.

Let κ = E[D(D − 2)] = σ 2
D + μ2

D − 2μD and note that, setting ω = γ = 0
in the formula for R0, κ > 0 if and only if R0 > 1. The above configuration model
random graphs possess a giant component if and only if κ > 0, see e.g. Durrett (2007),
Theorem 3.1.3. Suppose that κ > 0. Setting γ = 0 and Dε = D in (9.1) shows that z
is now given by the unique solution in [0, 1) of

μDz = f ′
D(z). (9.7)

and the asymptotic fraction of vertices in the giant components of the above configu-
ration model random graphs is given by ρ = 1 − fD(z).

Let RN
MR and RN

NSW denote respectively the size of the giant component in an MR
and an NSW random graph on N vertices. Setting γ = 0 in Conjecture 9.1 (a)(ii) and
(b) yields the following conjecture.

Conjecture 9.2 (CLT for the size of the giant component)
Suppose that κ > 0, dmax < ∞ and p1 > 0. Then,

(a) for an MR random graph,

√
N
(
N−1RN

MR − ρ
)

D−→ N (0, σ 2
MRGC) as N → ∞, (9.8)

where

σ 2
MRGC =1 − ρ − fD(z2) − z2

[
1 − μ−1

D f ′′
D(z)

]
[
2 f ′

D(z2) − μD

]

− z2
[
1 − μ−1

D f ′′
D(z)

]2

[
f ′
D(z2) + z2 f ′′

D(z2) − 2μDz
2
]
; (9.9)

(b) for an NSW random graph,

√
N
(
N−1RN

NSW − ρ
)

D−→ N (0, σ 2
NSWGC) as N → ∞, (9.10)

where

σ 2
NSWGC = ρ(1 − ρ) + z2

[
1 − μ−1

D f ′′
D(z)

]μD

+ z4
[
1 − μ−1

D f ′′
D(z)

]2

(
σ 2
D + μ2

D − 2μD

)
. (9.11)
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It is easily verified that the expressions (9.9) and (9.11) for the asymptotic variances
σ 2
MRGC and σ 2

NSWGC coincide with those first obtained by Ball and Neal (2017) using
a completely different method; a CLT was conjectured in that paper and subsequently
proved for an MR random graph in Barbour and Röllin (2019), and for both MR and
NSW random graphs by Janson (2018). The results proved in these three papers allow
for unbounded degrees under suitable conditions.

10 Numerical examples

In this section we give numerical results which exemplify some of the limit theorems
and support some of the conjectures presented in the paper and give examples of
using those limiting results for approximation. Such approximations follow from our
asymptotic results in exactly the same way as the approximate distribution of the sum
of independent and identically distributed random variables follows from the classical
CLT. For example, we can use Eq. (3.15) in Theorem 3.2 to say that, for large N ,
the distribution of W N (t) is approximately that of Nw(t) + √

NV (t), from which
approximations for the mean and variance of W N (t) follow immediately from the
corresponding properties of the Gaussian process V (t). We also explore numerically
some aspects of the behaviour of the model we have analysed, using the asymptotic
results we have derived. In our numerical examples relating to the temporal evolution
of the epidemic we look only at the mean and variance of the number of infective
individuals in the population, we do not investigate any other quantities of interest or
explicitly investigate the covariance/correlation structure in any way.

In this section we use the notation D ∼ Poi(λ) or D ∼ Geo(p) to denote that the
network degree distribution follows a standard Poisson or Geometric distribution with
mass functions pk = e−λλk/k! (k = 0, 1, . . .) or pk = p(1 − p)k (k = 0, 1, . . .),
respectively. In particular we shall use repeatedly in our examples the distributions
D ∼ Poi(5) and D ∼ Geo(1/6). These distributions both have mean 5 and their
standard deviations are

√
5 ≈ 2.2 and

√
30 ≈ 5.5 respectively.

First, however, we discuss some of the issues that arise in relation to the numerical
implementation of our analytical results.

10.1 Implementation

The numerical implementation of our asymptotic results concerning epidemic final
size (the formulae laid out in Propositions 5.1 and 6.1 and Conjecture 7.1) is
straightforward, involving root-finding, numerical integration and derivatives up to
order 3 of the degree distribution PGF fD . For the degree distributions we use, we

have f (i)
D (s) = λi e−λ(1−s) when D ∼ Poi(λ) and f (i)

D (s) = i !p(1−p)i

(1−(1−p)s)i+1 when
D ∼ Geo(p), with both formulae being valid for i = 0, 1, . . .. In the final size exam-
ples we always use the version of these results with εE = 0, i.e. we work under the
asymptotic regime where the epidemic starts with a trace of infection. The results
concerning the evolution of the epidemic through time (Theorems 3.1, 3.2 and 7.2)
warrant discussion of some issues that arise.
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An obvious first issue is initial conditions (x(0), y(0), zE (0)) and Σ(0) for the
system of ODEs given by (3.9)–(3.11) together with the variance/covariance-related
matrix ODE (3.17) (see also Remark 7.3). In an MR network we take the initial
infectives to comprise a fixed number of individuals, with numbers of individuals of
the various degrees chosen in the same proportions as they are present in the whole
population. In an NSW network we choose the required number of initial infectives
uniformly at random from the population. Ideally we might want the initial conditions
to represent a large outbreak initiated by few initial infectives; this is a rather more
complex situation and could be addressed using the results of Ball and House (2017).

Let ε be the proportion of individuals initially infected in the limit as N → ∞.
It is straightforward to show that xi (0) = limN→∞ N−1E[XN

i (0)] = pi (1 − ε) and
similarly that yi (0) = piε and zE (0) = 0 (cf. the paragraph immediately before
Theorem 3.1; with a NSW network these limits hold almost surely). Turning to Σ(0),
in the case of an MR network we have chosen the initial conditions so that there
is no variability; i.e. all elements of ΣMR(0) are zero. With an NSW network there
is variability in the initial conditions; to characterise it we let i N0 = [εN ] be the
number of initially infected individuals (or assume that i N0 is a function of N such that
limN→∞ N−1i N0 = ε) and use the notation σxi ,x j (0) for the (i, j)-th element of the
submatrix of ΣNSW(0) corresponding to the susceptible elements (cf. the partitioning
in (7.13)), so for example σxi ,y j (0) = limN→∞ N−1cov(XN

i (0),Y N
j (0)).We find that

the following elements ofΣNSW(0) are non-zero: for all i ,σxi ,xi (0) = pi (1−pi )(1−ε)

and σyi ,yi (0) = pi (1 − pi )ε; and for all i �= j , σxi ,x j (0) = −pi p j (1 − ε) and
σyi ,y j (0) = −pi p jε. Derivations can be found in Appendix H.

After solving the ODE systems numerically we can calculate the asymptotic means
and variances for other quantities of interest, for example to approximate I N (t), the
number of infected individuals at time t , we use

lim
N→∞ N−1E[I N (t)] =

∞∑

i=0

yi (t) and lim
N→∞ N−1/2var[I N (t)] =

∞∑

i=0

∞∑

j=0

σyi ,y j (t).

The final ODE-related issue is choosing the value of M , the maximum degree, to use
when the degree distribution does not have finite support. (This amounts to setting
xi (t) = yi (t) = 0 for all t ≥ 0 and i = M+1, M+2, . . ..) The upper bound M needs
to be large enough that the approximation is accurate but not so large that the systems
of ODEs are impractical to solve numerically (the number of ODEs grows like M2).
To decide on an appropriate value for M we compare plots of the asymptotic means
and variances of I (t) (i.e. the solid lines in the lower plots of Fig. 1), increasingM until
there is no observable difference in these plots. We also compare the predicted relative
‘final’ size x(0) − x(tend) from the numerical ODE solution to the asymptotic final
size predicted by Proposition 5.1. For the degree distributions we find that M = 15 is
sufficient when D ∼ Poi(5) and M = 50 when D ∼ Geo(1/6).

Simulation of the epidemic process is relatively straightforward. Given a sequence
of degrees (either [MR] a specified sequence or [NSW] independent realisations from
the distribution {pk}) we (i) generate the network, (ii) choose initial infectives, (iii)
spread the epidemic on the network. There is therefore randomness in each simulation
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deriving not just from the evolution of the epidemic, but also the graph construction
and, in the case of an NSW graph, the degree sequence. When we calculate confidence
intervals (CIs) for quantities associated with simulations of the temporal evolution
of the epidemic they are calculated independently for each time point; i.e. they are
not confidence bands for the process. Endpoints of CIs for standard deviations are
calculated as the square roots of the endpoints of standard symmetric (in terms of
probability) CIs for the variance.

10.2 Convergence and approximation of temporal properties

First we demonstrate numerically some of the limit theorems from earlier sections,
showing both how the convergence is realised and thus how these limit theorems can
be used for approximation. We give examples only with an NSW graph construction,
but much the same observations apply in the MR graph scenario.

In Fig. 1 we demonstrate using Theorem 7.2 for approximation of the temporal
evolution of the epidemic, comparing simulated trajectories of the prevalence I N (t)
(for N = 1000) versus time t of the model with predictions from the functional central
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Fig. 1 Demonstration of approximation implied by Theorem 7.2, for a D ∼ Poi(5) and b D ∼ Geo(1/6).
The upper plots show 100 simulated sample paths of the number of infectives I N (t) against time t , together
with the mean and central 95% probability bands for I N (t) predicted by the functional CLT. The lower plots
show asymptotic values and estimates from 1000 simulations of the scaled mean and standard deviation
of the number of infectives through time. Other parameters are N = 1000, β = 3/2, γ = 1, ω = 1,
i N0 = 0.05N (All plots are truncated at the time when the proportion of individuals that are infective drops
below 0.05)
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Fig. 2 Demonstration of convergence described by Theorem 7.2, for D ∼ Geo(1/6). Histograms of I N (ti )
(based on 1000 simulated trajectories) and normal approximation for three fixed time points t1 = 0.35,
t2 = 0.6, t3 = 1.5 and 3 population sizes N = 200, N = 1000, N = 5000. Other parameters are β = 3/2,
γ = 1, ω = 1, i N0 = 0.05N

limit theorem, for a Poisson and aGeometric degree distribution. The upper plots show
the simulated trajectories together with the mean and a central 95% probability band
predicted by the CLT; they suggest that the approximation is fairly good. The lower
plots compare the mean and standard deviation of the prevalence through time with
the LLN and CLT based asymptotic predictions.

In Fig. 2 we investigate the convergence of the distribution of I N (t) to its N → ∞
limit at three time points t1, t2 and t3. The times are chosen so that t2 is close to the time
of peak prevalence and t1 and t3 are when prevalence is increasing and decreasing,
respectively, at a level roughly half that of the peak prevalence. (Effectively we are
examining the upper-right plot of Fig. 1 in detail at these three timepoints.) In this figure
we have used a geometric degree distribution, but very similar conclusions are obtained
using different distributions. This convergence is further investigated/demonstrated in
Fig. 3,where, separately for each of the same three timepoints,weplot theKolmogorov
distance between the empirical and asymptotic distributions of the number of infectives
against population size N .
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Fig. 3 Demonstration of convergence described by Theorem 7.2, for D ∼ Geo(1/6). The distribution
of I N (ti ) (based on 5000 simulated trajectories) and its normal approximation are compared using the
Kolmogorov distance at three fixed time points t1 = 0.35, t2 = 0.6, t3 = 1.5 for population sizes
N = 100, 200, 500, 1000, 2000, 5000, 10,000. Other parameters are β = 3/2, γ = 1,ω = 1, i N0 = 0.05N

Broadly speaking, Fig. 1 and similar plots for other population sizes, together
with Figs. 2 and 3 and similar plots for other degree distributions, show that the
predicted convergence is apparent, but seems slower for the later times. Even for
quite small population sizes in the low hundreds, the asymptotic approximation to the
mean behaviour of the epidemic is excellent. With smaller population sizes of a few
hundred the approximation of the variability seems quite good in the early phase of
epidemic growth, begins toworsen at or slightly before the time of peak prevalence and
consistently underestimates the variability of I N (t) after that. As the population size
increases, the approximation for the standard deviation improves but not as quickly
as one might hope: the agreement between asymptotic and empirical distributions
seems to improve fairly slowly as N increases from 200 to 5000. Thus we can be
very confident in using an LLN-based approximation for nearly any population size;
but CLT-based approximations must be used with some caution, particularly at and
after the time of peak prevalence. For these later times, a CLT-based approximation
seems to systematically underestimate the variability in the number of infectives in
the population. On a slightly more theoretical note, the plausibly linear (though also
decidely noisy) behaviour of the plots in Fig. 3 is consistent with these Kolmogorov
distances tending to 0 as N → ∞. Consistent with the observations above, this
convergence is at roughly the same rate for the time points in the early growth phase
and near peak prevalence but much more slowly for the later time point t = t3 in the
phase where the infection is dying out.
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Fig. 4 Histograms (based on 10,000 simulations) and normal approximation of the final size distribution
of major outbreaks for epidemics on graphs with a D ∼ Poi(5), b D ∼ Geo(1/6) and varying populations
sizes N = 200, 2000. Other parameter values are β = 3/2, γ = ω = 1 and i N0 = 10

10.3 Approximation of epidemic final size

In Fig. 4 we demonstrate approximation results for the final size of major outbreaks
in our epidemic model on an NSW graph (Conjecture 7.1). Again we see that the
approximation is quite reasonable for relatively small population sizes in the low
hundreds and becomes very good indeed for population sizes in the thousands.

10.4 The effect of dropping

Next we investigate the behaviour of our model in respect of the introduction of the
dropping mechanism. Starting with an epidemic without dropping we examine the
behaviour of R0 and ρ (the fraction of the population that is ultimately infected in the
limiting determinstic model—see Sect. 5.3) as the dropping rate ω is increased from
0 (no dropping) to a value which brings the model below threshold. Figure 5 does
this for two ‘starting’ models, one with a Poisson and one with a geometric degree
distribution, both well above threshold with with ρ comfortably above 0.5. (Recall that
R0 and ρ are independent of whether the network is MR or NSW.) In both cases we
see that increasing ω reduces the virulence and severity of the epidemic as measured
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Fig. 5 Plots of R0 and ρ showing the impact of increasing the dropping rate from zero. Other parameters
are β = 3/2, γ = 1, ε = 0 and a D ∼ Poi(5), b D ∼ Geo(1/6)

by R0 and ρ. Perhaps noteworthy is that one of the plots of the mean final size ρ is
concave and the other convex.

10.5 The effect of random graphmodel on variances

We now demonstrate the effect of the random graph model (MR or NSW) on the
variability of the final size of large outbreaks in our epidemicmodel. Figure 6 compares
how the asymptotic scaled standard deviations for the final size of a major outbreak
(i.e. σMR(β, γ, ω) and σNSW(β, γ, ω) in Proposition 6.1 and Conjecture 7.1 ) behave
as dropping is included into a baseline model with no dropping. The upper plots show
that these standard deviations can change quite dramatically with ω; the lower plots
show that the extra variability in the NSW network model can result in substantially
more variability in the epidemic final size. As might be anticipated, this effect is more
pronounced for the geometric compared to the Poisson case, i.e. when the degree
distribution is more variable.

10.6 Increased recovery rate instead of dropping

Lastly we investigate the relationship between our model and the related model with
increased recovery rate instead of dropping, as discussed in Sect. 8. We focus mainly
on the claims about relative variability in the two models E(ω, γ ) with dropping and
E(0, γ +ω) with increased recovery rate, though the results we present also illustrate
Theorem 8.1, which gives an ordering of the major outbreak probabilities in the two
models. Again we focus on the NSW graph model; similar conclusions (with less
variability) are obtained with the MR graph model.

Figure 7 compares the final size distribution of the model with dropping to that of
the model with increased recovery rate; again for two different degree distributions.
The histograms and the normal approximation of the distribution of the size of a major
outbreak confirm that the model with dropping does have a smaller variance in the
size of major outbreaks and a larger chance of a major outbreak. Table 1 summarises
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Fig. 6 Comparison of the scaled asymptotic standard deviations of the final size of a large outbreak in
the MR and NSW models, as the dropping rate ω is increased from zero. In a the degree distribution is
D ∼ Poi(5) and in b D ∼ Geo(1/6); other parameters are β = 3/2, γ = 1, ε = 0. The upper plots show
the actual scaled asymptotic standard deviations σMR and σNSW and the lower plots show their ratio; all
plots also show the relative final size ρ for reference

the plots in Fig. 7. Here we see quite clearly that the major outbreak probabilities and
the variances of the final size distributions are ordered as predicted by Theorem 8.1
and the argument involving differing dependence structures in Sect. 8. Differences
between the two degree distributions are not very marked.

Figure 8 shows how the discrepancy in these variabilities generally increases
with the dropping rate. Interestingly, we see that with the (more variable) geomet-
ric degree distribution the relative discrepancy increases with ω for most values of
ω; but decreases slightly with ω when ω is sufficiently large that the size of large
outbreaks gets close to zero and the variability is quite large.

Figure 9 shows how the asymptotic quantities relating to the mean and standard
deviation of SN (t) and I N (t) compare through time for these models. In the model
with dropping we denote the asymptotic mean proportion infected by μI (t;β, ω, γ )

and the asymptotic scaled standard deviation of I N (t) by σ I
NSW(t;β, ω, γ ); we let

μS(t;β, ω, γ ) and σ S
NSW(t;β, ω, γ ) denote the corresponding quantities for the num-

ber of susceptibles SN (t). Note that the absolute scale of the standard deviations here
is not directly meaningful (to approximate the standard deviation in a population of
size N these limiting quantities should be multiplied by

√
N ); it is the relative val-
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Fig. 7 Histograms of 10,000 simulated final sizes for the epidemics E(ω, γ ) and E(0, γ +ω), with overlaid
asymptotic approximations. Parameters are β = 3/2, γ = 1, ω = 2, N = 1000, i N0 = 5 and the underlying
graphs are of NSW type with a D ∼ Poi(5), b D ∼ Geo(1/6)

ues that are of interest here. Firstly, the upper plots confirm our assertions about the
relative numbers of susceptibles in the two models: that the mean (LLN) behaviour
of the two models is the same but the model with dropping exhibits less variability
(cf. the final size behaviour in Fig. 7 and Table 1). In the lower plots the behaviour
of the individual models E(ω, γ ) and E(0, γ + ω) is broadly in keeping with that
observed in Fig. 1, however the differences between the two models are quite stark.
Even though the two models have the same final size they achieve this through very
different temporal behaviour: in the E(0, γ + ω) model individuals are infectious for
less time but during that time infect others at a higher rate.

11 Concluding comments

The current paper is concerned with amodel for an epidemic taking place on a network
inwhich susceptible individualsmaydrop their connections to infectious individuals as
a preventive measure. A consequence of the behavioural dynamics is that the network
changes in time, and the way the network changes depends on the epidemic process
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Fig. 8 Scaled asymptotic standard deviations of the final size of a large outbreak in the models E(ω, γ ) and
E(0, γ + ω) for increasing dropping rate ω, starting from the ‘base model’ with β = 3/2, γ = 1, ω = 0
and ε = 0. The underlying graphs are of the NSW type with a D ∼ Poi(5), b D ∼ Geo(1/6). The upper
plots show the standard deviations and the lower plot their ratio; all plots also show the relative final size ρ

for reference

taking place on it (sometimes referred to as an adaptive network). We derive limiting
properties of the epidemic process assuming a large outbreak in a large community:
the LLN and functional CLT for the epidemic process, as well as conjecture a LLN
and CLT for the final number getting infected. We also give a version of the functional
CLT in Ethier and Kurtz (1986), Chapter 11, which allows for asymptotically random
initial conditions (Theorem 7.1). Although it is a simple extension of Ethier and Kurtz
(1986), Theorem 11.2.3, we have not seen the result previously in the literature and
it (especially the covariance formula (7.3)) clearly has interest and applications well
beyond the present setting. Furthermore, from the analysis of the dropping model we
also obtain results for the Markovian SIR epidemic on a configuration model and for
the configuration model giant component. In particular, we conjecture CLTs, with
essentially fully explicit expressions for the asymptotic variances, for the final size of
such epidemics on both MR and NSW random graphs, and for the size of the giant
components of those graphs.

The above LLN and functional CLT are proved under the assumption of bounded
degrees. As noted in Remark 4.1, the arguments in Ball (2018) should yield proofs
of the final-size LLN and CLTs under this assumption. Rigorous extension of these
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Fig. 9 Scaled asymptotic means and standard deviations of the number of susceptible and infectious indi-
viduals through time (in the upper and lower plots, respectively), comparing the model with dropping to
that with increased recovery rate. Model parameters are as in Fig. 7, except that i N0 = 0.05N . (Note that in

the upper plots the two μS(· · · ) quantities are exactly equal)

results to networkswith unbounded degrees is a naturalmathematical next step, though
bounded degrees are clearly sufficient for most biological purposes.

The simulations in Sects. 10.2 and 10.3 show that the limiting approximations kick
in for moderate population sizes. Further, from the numerical investigations, dropping
of edges seems to have the greatest preventive effect when the basic reproduction
number R0 is not too large, more specifically when it is close to the epidemic threshold
value of one. In fact, if R0 is moderate in the absence of dropping of edges, a fairly
small dropping rate can make the epidemic sub-critical implying that large outbreaks
are no longer possible in the large population limit.

This paper is inspired by themodel in Britton et al. (2016), who study only the initial
stages of an outbreak. In the current paper, in order to make progress in the analysis
of the complete outbreak, we assume that edges can only be dropped, in contrast to
Britton et al. (2016), which allows for some of the dropped edges to rewire to other
individuals. It would of course be of interest to study limiting properties of this more
general dropping/rewiring model. However, the effective degree approach does not
apply immediately in a rigorous fashion to this setting, and rigorous analysis of the
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non-initial stages of themodel including rewiring is left as an open problem. Themodel
with rewiring is considered further in Leung et al. (2018), where it is demonstrated that
such rewiring of edges, although always beneficial to the susceptible individual, can
have an adverse effect at the population level. Other possible forms of social distancing
include reducing contacts rather than dropping edges completely (e.g. Viljoen et al.
(2014) and Zhang et al. (2014)) or only temporarily dropping the edge (e.g. Althouse
and Hébert-Dufresne (2014)).

Another extension of the current model would be to allow the network to change in
time also for reasons other than the epidemic process. One could for example consider
some type of dynamic network model as the base network model (e.g. one of the
dynamic network models of Leung and Diekmann (2016)), and increase the dropping
rate indirectly by decreasing the rate of creation of new edges and/or increasing the
rewiring rate between susceptible-infectious pairs of individuals, see e.g. Reniers and
Armbruster (2012) for a simulation study where partnership dissolution rates depend
on the HIV status of the couple. Obviously, rigorous analysis of such models will be
appreciably harder, if indeed possible.

Finally, we note that we have restricted ourselves to theMarkovian setting through-
out this paper. As always, this assumption is not realistic and is made for mathematical
convenience. In the setting of this paper, it is possible to generalize some of our results
to include non-exponentially distributed infectious periods. Using a susceptibility set
argument, as in e.g. Ball and Sirl (2013), Section 2.1.2, we can prove results for the
deterministic final size similar to Proposition 5.1(b). Specifically, if the infectious
period follows a random variable I , the deterministic final size is the same as that
for a standard SIR epidemic on a configuration model network in which the infec-
tious period is distributed as I ′ = min(I ,W ), where W is independent of I and
has an exponential distribution with rate ω. Recently, Sherborne et al. (2018) have
extended edge-based compartmental models of epidemics on networks to allow for
non-Markovian transmission and recovery processes, and that methodology should
enable the limiting deterministic model for our model with dropping of edges and
non-exponentially distributed infectious periods to be determined, as can be done
using the binding site formulation of Leung and Diekmann (2016). It seems likely
that our effective degree approach, together with LLN and functional CLT theorems
in Wang (1975, 1977) for age and density dependent population processes, can be
used to put such deterministic models in a fully rigorous asymptotic framework and
provide an associated functional CLT.
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ADerivation of drift function F(x, y, zE)

In this appendix we derive the expression (3.8) for F(x, y, zE ). First note that (3.1)
and (3.7) yield

∑

l∈Δ1

lβl (x, y, zE )

=
∞∑

i=1

∞∑

j=1

βiyi j x j
ηE

(−eIi + eIi−1 − eSj + eIj−1)

= β

ηE

⎡

⎣xE

∞∑

i=1

iyi (−eIi + eIi−1) + yE

∞∑

j=1

j x j (−eSj + eIj−1)

⎤

⎦

= β

ηE

∞∑

i=0

{
xE

[
(i + 1)yi+1 − iyi

]
eIi + yE

[
−i xi eSi + (i + 1)xi+1eIi

]}
, (A.1)

(3.2) and (3.7) yield

∑

l∈Δ2

lβl (x, y, zE ) =
∞∑

i=1

∞∑

j=1

(β + ω)iyi j y j
ηE

(−eIi + eIi−1 − eIj + eIj−1)

= 2
(β + ω)

ηE

∞∑

i=1

∞∑

j=1

iyi j y j (−eIi + eIi−1)

= 2
(β + ω)yE

ηE

∞∑

i=0

[−iyi + (i + 1)yi+1]eIi , (A.2)

and (3.3) and (3.7) yield

∑

l∈Δ3

lβl (x, y, zE )

=
∞∑

i=1

∞∑

j=1

ωiyi j x j
ηE

(−eIi + eIi−1 − eSj + eSj−1)

= ω

ηE

⎡

⎣xE

∞∑

i=1

iyi (−eIi + eIi−1) + yE

∞∑

j=1

j x j (eSj + eSj−1)

⎤

⎦

= ω

ηE

∞∑

i=0

{
xE [(i + 1)yi+1 − iyi ]eIi + yE [(i + 1)xi+1 − i xi ]eSi

}
. (A.3)
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Similarly, (3.4) and (3.7) yield

∑

l∈Δ4

lβl (x, y, zE )

=
∞∑

i=1

(β + ω)iyi zE
ηE

(−eIi + eIi−1 − eR)

= − (β + ω)yE zE
ηE

eR + (β + ω)zE
ηE

∞∑

i=0

[(i + 1)yi+1 − iyi ]eIi , (A.4)

and (3.5) and (3.7) yield

∑

l∈Δ5

lβl (x, y, zE ) =
∞∑

i=0

γ yi (−eIi + ieR)

= γ yE eR − γ

∞∑

i=0

yi eIi . (A.5)

Adding (A.1) to (A.5) and recalling that ηE = xE + yE + zE gives (3.8).

B Application of theorems for density dependent population
processes

In this appendix we show that the conditions of the Theorems 11.2.2 and 11.2.3
in Ethier and Kurtz (1986), Chapter 11, concerning density dependent population
processes are satisfied when there is a maximum degree, dmax say, and ρ < 1. (Recall
that ρ is the fraction of the population that is ultimately infected by the limiting
deterministic model.) Thus, for t ≥ 0,

W N (t) =
(
XN
0 (t), XN

1 (t), . . . , XN
dmax

(t),Y N
0 (t),Y N

1 (t), . . . ,Y N
dmax

(t), ZN
E (t)

)
,

so {W N (t)} has dimension d = 2(dmax + 1) + 1. The limiting deterministic process
is {w(t)}, where, for t ≥ 0,

w(t) = (x0(t), x1(t), . . . , xdmax(t), y0(t), y1(t), . . . , ydmax(t), zE (t))

= (w1(t), w2(t), . . . , wd(t)).

The domain of the intensity functions βl (w) (l ∈ Δ) is

H∗ =
{

w : wi ≥ 0 (i = 1, 2, . . . , d),

d∑

i=1

wi ≤ 1

}

.
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The proofs of the theorems in Ethier and Kurtz (1986), Chapter 11, make it clear that
the conditions need only hold in some small neighbourhood of {w(t)}. Thus, since
ρ < 1, there exists ε > 0, so that H∗ can be replaced by H∗(ε) = {w ∈ H∗ : xE ≥ ε},
where xE = ∑dmax

i=1 i xi . It follows that the density dependent condition (3.6) is satisfied
for all sample paths of {W N (t)} such that N−1W N (t) remains within H∗(ε), which
is sufficient for the proofs in Ethier and Kurtz (1986).

Considering first the LLN for {W N (t)}, the conditions of Ethier and Kurtz (1986),
Theorem 11.2.1, are satisfied if (i)

∑
l∈Δ |l| supw∈H∗(ε) βl (w) < ∞; (ii) the drift func-

tion F is Lipschitz continuous on H∗(ε); and (iii) limN→∞ N−1W N (0) = w(0) �= 0.
It is easily seen from (3.7) that (i) is satisfied, since Δ is finite and ηE ≥ xE ≥ ε > 0
for all w ∈ H∗(ε). It follows from (3.8) that the partial derivatives ∂ j Fi (w)

(i, j = 1, 2, . . . , d) are uniformly bounded on H∗(ε), since ηE ≥ ε for allw ∈ H∗(ε),
so (ii) is satisfied. Finally, it is easily seen from the proof in Ethier and Kurtz (1986)
that the result still holds if the convergence in (iii) holds almost surely, thus the LLN
for {W N (t)}, stated in Sect. 3, holds for epidemics on both MR and NSW random
graphs.

Turning to the functional CLT (3.15), where to be more explict ⇒ denotes weak
convergence in the space of right-continuous functions f : [0,∞) → R

d having
limits from the left (i.e. càdlàg functions), endowed with the Skorohod metric, the
conditions of Ethier and Kurtz (1986), Theorem 11.2.3, are satisfied if, in addition to
(i)–(iii), (iv)

∑
l ∈ Δ|l|2 supw∈H∗(ε) βl (w) < ∞; (v) the intensity functions βl (w)

(l ∈ Δ) and the partial derivatives ∂ j Fi (w) (i, j = 1, 2, . . . , d) are continuous on
H∗(ε); and (vi) limN→∞

√
N
(
N−1W N (0) − w(0)

) = V (0), where V (0) is constant.
Now (iv) is satisfied, for similar reasons to (i). It is easily seen from (3.7) and (3.8)
that (v) is satisified, and (vi) follows from (3.14). Thus (3.15) is proved.

Consider now the random time-scale transformed process {W̃ N
(t)} introduced in

Sect. 4. The limiting determinstic process is now {w̃(t) : t ≥ 0}, where
w̃(t) = (x̃0(t), x̃1(t), . . . , x̃dmax(t), ỹ0(t), ỹ1(t), . . . , ỹdmax(t), z̃E (t)).

For any t0 ∈ (0, τ̃ ), there exists ε′ > 0 such that ỹE (t) = ∑dmax
i=1 i ỹi (t) ≥ ε′ for

all 0 ≤ t ≤ t0. Let H̃∗(ε′) = {w̃ ∈ H∗ : ỹE ≥ ε}. The proofs that the conditions
of Ethier and Kurtz (1986),Theorems 11.2.1 and 11.2.3, are satisfied for the trans-

formed process {W̃ N
(t) : 0 ≤ t ≤ t0} are analagous to those above, except H∗(ε) is

replaced by H̃∗(ε′). Note that the denominator in the intensity functions β̃l (w) (l ∈ Δ)

given at (4.1) (and hence in the drift function F̃ given at (4.2)) is ỹE , where for the
untransformed process it is ηE .

C Properties of �̃ı

In this appendix we prove that (i) τ̃ < ∞ and (ii) (4.12) holds for all δ ∈ [0, yE (0)).
Recalling the definition of τ̃δ at (4.10), it follows that τ̃δ is the smallest positive solution
of ỹE (t) = δ with ỹE (t) given by (5.11) (Clearly, τ̃δ = 0 for δ > yE (0).) Also, it
follows from (5.9), (6.12), and ỹE (τ̃δ) = δ that
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∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ))

= −(β + ω)δ + e−2(β+ω)τ̃δ
[
β f ′′

Dε
(ψ(τ̃δ)) − (β + ω + γ )μD

]
.

Let zδ = e−(β+ω)τ̃δ and recall that ψ(τ̃δ) = pω + (1− pω)e−(β+ω)τ̃δ = ψ̃(zδ). Then,

∇ϕ(w̃(τ̃δ))· F̃(w̃(τ̃δ)) = −(β+ω)δ+z2δ
[
β f ′′

Dε

(
ψ̃(zδ)

)− (β + ω + γ )μD
]
. (C.1)

and from (5.11), if follows that zδ satisfies

f ′
Dε

(
ψ̃(zδ)

)− [(β + ω + γ )zδ − γ ]
β + ω

μD = − δ

zδ
. (C.2)

For z ∈ [0, 1], let

A(z) = f ′
Dε

(
ψ̃(z)

)− [(β + ω + γ )z − γ ]
β + ω

μD, (C.3)

so z0 = e−(β+ω)τ̃ = e−(β+ω)τ̃0 satisfies A(z0) = 0.Now A(0) = f ′
Dε

(pω)+γ /(β+ω)

and A(1) = f ′
Dε

(1) − μD = −yE (0) < 0. (Recall the definition of fDε at (5.3).)
Further, unless pω = γ = f ′

Dε
(0) = 0, then A(0) > 0, so since A(z) is continuous,

z0 ∈ (0, 1) and τ̃ (and hence also τ̃δ) is finite. For δ ∈ (0, yE (0)), note that zδ satisfies
A(zδ) + δ

zδ
= 0. Thus, A(1) + δ

1 = δ − yE (0) < 0 and A(z) + δ
z → ∞ as z ↓ 0, so

zδ ∈ (0, 1) and τ̃δ < ∞. If pω = γ = f ′
Dε

(0) = 0 and δ = 0, then it is easily verified
using the convexity of f ′

Dε
that z0 = 0, so τ̃ = ∞.

We show now that ∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ)) < 0 for δ ∈ [0, yE (0)). Differentiat-
ing (C.3) and recalling that pω = ω

β+ω
yields

A′(z) = 1

β + ω

[
β f ′′

Dε

(
ψ̃(z)

)− (β + ω + γ )μD
]
.

Suppose, for contradiction, that ∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ)) ≥ 0. Then, recalling (C.1),
A′(zδ) ≥ δ

z2δ
, whence A′(z) > δ

z2
for z ∈ [zδ, 1], since A′ is increasing on [0, 1]. It

follows from (C.2) that A(zδ) = − δ
zδ
. Thus,

A(1) > A(zδ) +
∫ 1

zδ

δ

z2
dz = −δ.

But A(1) = f ′
Dε

(1)−μD = −yE (0), since, using (5.3), f ′
Dε

(1) = ∑∞
k=1 k(pk−εk) =

μD − yE (0). Thus, yE (0) < δ, which is a contradiction as δ ∈ [0, yE (0)). Hence
∇ϕ(w̃(τ̃δ)) · F̃(w̃(τ̃δ)) < 0, as required.

Finally, suppose that the epidemic is started by a trace of infection, so yE = 0, and
that δ = 0. Then, Proposition 5.1(b) shows that (C.2) (with Dε replaced by D and
δ = 0) has a (unique) solution, z0, in [0, 1) if and only if R0 > 1. Moreover, z0 > 0
unless pω = γ = f ′

D(0) = 0.
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Further, the above proof is easily modified to show that ∇ϕ(w̃(τ̃ )) · F̃(w̃(τ̃ )) < 0.

D Calculations pertaining to 8̃(t,u)

Expanding (4.9) in partitioned form yields, using (6.16),

∂

∂t
Φ̃XX (t, u) = ∂ F̃X X (w̃(t))Φ̃XX (t, u), (D.1)

and, for A = Y , Z and B = X ,Y , Z ,

∂

∂t
Φ̃AB(t, u)

= ∂ F̃AX (w̃(t))Φ̃XB(t, u) + ∂ F̃AY (w̃(t))Φ̃Y B(t, u) + ∂ F̃AZ (w̃(t))Φ̃Z B(t, u),

(D.2)

where Φ̃XY (t, u) = 0 and Φ̃XZ (t, u) = 0�.
It follows from (4.2) that

(
∂ F̃X X (w̃(t))

)

i j
= −βiδi, j + ω

[−iδi, j + (i + 1)δi+1, j
]
.

Thus, letting φ̃i j (t, u) denote the (i, j)th element of Φ̃XX (t, u), it follows from (D.1)
that, for t ≥ u,

∂

∂t
φ̃i j = −(β + ω)i φ̃i j + ω(i + 1)φ̃i+1, j (i = 0, 1, . . .), (D.3)

with the initial condition φ̃i j (u, u) = δi, j . For fixed j , apart from the initial condition,
φ̃i j (t, u) (i = 0, 1, . . .) satisfies the same system of ODEs as that given at (4.3) for
x̃i (i = 0, 1, . . .), and it follows from (5.1) that, for t ≥ u,

φ̃i j (t, u) =
{( j

i

)
e−(β+ω)i(t−u)

(
1 − e−(β+ω)(t−u)t

) j−i
p j−i
ω for j ≥ i,

0 for j < i,
(D.4)

so

(
1Φ̃XX (t, u)

)

j
=

j∑

i=0

(
j

i

)

e−(β+ω)i(t−u)
(
1 − e−(β+ω)(t−u)t

) j−i
p j−i
ω

=
(
pω + (1 − pω)e−(β+ω)(t−u)

) j

= ψ(t − u) j ( j = 0, 1, . . .), (D.5)

where ψ(t) is defined at (5.5).
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From (4.2), the coefficient of eIi in F̃(x, y, zE ) is

(β + ω)[−iyi + (i + 1)yi+1]
(

1 + ηE

yE

)

+ β(i + 1)xi+1 − γ yi
ηE

yE
,

so

(
∂ F̃Y X (w̃(t))

)

i j
= (β + ω)[−i ỹi (t) + (i + 1)ỹi+1(t)] j

ỹE (t)

+β(i + 1)δi+1, j − γ
j ỹi (t)

ỹE (t)
.

Hence

∞∑

i=1

i
(
∂ F̃Y X (w̃(t))

)

i j
= −(β + ω + γ ) j + β j( j − 1) ( j = 0, 1, . . .),

so

p ∂ F̃Y X (w̃(t)) = −(β + ω + γ ) p + β p[2], (D.6)

where p[2] = (p[2],0, p[2],1, . . .) with p[2],i = i(i − 1) (i = 0, 1, . . .). Similar calcu-
lations show that

p ∂ F̃YY (w̃(t)) = −[2(β + ω) + γ ] p, (D.7)

p ∂ F̃Y Z (w̃(t)) = −(β + ω + γ ), (D.8)

∂ F̃Z X (w̃(t)) = γ p, (D.9)

∂ F̃ZY (w̃(t)) = γ p, (D.10)

∂ F̃Z Z (w̃(t)) = γ − β − ω. (D.11)

Setting A = Y in (D.2) and using (D.6)–(D.8) yields, for B = X ,Y , Z ,

∂

∂t
p Φ̃Y B(t, u) = − (β + ω + γ ) p Φ̃XB(t, u) + β p[2] Φ̃XB(t, u)

− [2(β + ω) + γ ] p Φ̃Y B(t, u) − (β + ω + γ )Φ̃Z B(t, u).

(D.12)

Setting A = Z in (D.2) and using (D.9)–(D.11) yields, for B = X ,Y , Z ,

∂

∂t
Φ̃Z B(t, u) = γ p Φ̃XB(t, u) + γ p Φ̃Y B(t, u) + (γ − β − ω)Φ̃Z B(t, u). (D.13)
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Setting B = Z in (D.12) and (D.13), and recalling that Φ̃XY (t, u) and Φ̃XZ (t, u)

are both identically zero, yields

∂

∂t
p Φ̃Y Z (t, u) = −[2(β + ω) + γ ] p Φ̃Y Z (t, u) − (β + ω + γ )Φ̃Z Z (t, u),

∂

∂t
Φ̃Z Z (t, u) = γ p Φ̃Y Z (t, u) + (γ − β − ω)Φ̃Z Z (t, u),

with initial condition

p Φ̃Y Z (u, u) = 0 and Φ̃Z Z (u, u) = 1.

This linear system of two ODEs has solution, for t ≥ u,

p Φ̃Y Z (t, u) = −β + ω + γ

β + ω
e−(β+ω)(t−u)

(
1 − e−(β+ω)(t−u)

)
,

Φ̃Z Z (t, u) = β + ω + γ

β + ω
e−(β+ω)(t−u) − γ

β + ω
e−2(β+ω)(t−u). (D.14)

Similarly, setting B = Y in (D.12) and (D.13) yields

∂

∂t
p Φ̃YY (t, u) = −[2(β + ω) + γ ] p Φ̃YY (t, u) − (β + ω + γ )Φ̃ZY (t, u),

∂

∂t
Φ̃ZY (t, u) = γ p Φ̃YY (t, u) + (γ − β − ω)Φ̃ZY (t, u),

with initial condition

p Φ̃YY (u, u) = p and Φ̃ZY (u, u) = 0

and solution, for t ≥ u,

p Φ̃YY (t, u) =
(

β + ω + γ

β + ω
e−2(β+ω)(t−u) − γ

β + ω
e−(β+ω)(t−u)

)

p,

Φ̃ZY (t, u) = γ

β + ω
e−(β+ω)(t−u)

(
1 − e−(β+ω)(t−u)

)
p. (D.15)

Setting B = X in (D.12) and (D.13) yields

∂

∂t
p Φ̃Y X (t, u) = −(β + ω + γ ) p Φ̃XX (t, u) + β p[2] Φ̃XX (t, u)

− [2(β + ω) + γ ] p Φ̃Y X (t, u) − (β + ω + γ )Φ̃Z X (t, u),

(D.16)

∂

∂t
Φ̃Z X (t, u) = γ p Φ̃XX (t, u) + γ p Φ̃Y X (t, u) + (γ − β − ω)Φ̃Z X (t, u),

(D.17)
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with initial condition

p Φ̃Y X (u, u) = 0 and Φ̃Z X (u, u) = 0. (D.18)

Further, using (D.4), for j = 0, 1, . . .,

(
pΦ̃XX (t, u)

)

j
= je−(β+ω)(t−u)ψ(t − u) j−1, (D.19)

(
p[2]Φ̃XX (t, u)

)

j
= j( j − 1)e−2(β+ω)(t−u)ψ(t − u) j−2. (D.20)

Note that (D.16)–(D.20) imply that, for 0 ≤ u ≤ t ,

p Φ̃Y X (t, u) = p Φ̃Y X (t − u, 0) and Φ̃Z X (t, u) = Φ̃Z X (t − u, 0), (D.21)

so we consider the case when u = 0.
Let

D =
[−2(β + ω) − γ −(β + ω + γ )

γ γ − β − ω

]

.

Then,

(
p Φ̃Y X (t, 0)
Φ̃Z X (t, 0)

)

=
∫ t

0
e−D(t−s)

(−(β + ω + γ ) p Φ̃XX (s, 0) + β p[2] Φ̃XX (s, 0)
γ p Φ̃XX (s, 0)

)

ds, (D.22)

with

e−Dt = 1

β + ω
e−2(β+ω)t

[
β + ω + γ β + ω + γ

−γ −γ

]

+ 1

β + ω
e−(β+ω)t

[−γ −(β + ω + γ )

γ β + ω + γ

]

. (D.23)

Substituting (D.23) into (D.22) yields, after using (D.19) and (D.20), that, for
j = 0, 1, . . ., (

p Φ̃Y X (t, 0)
)

j
= I (1)

j (t) + I (2)
j (t) + I (3)

j (t), (D.24)

where

I (1)
j (t) = −(β + ω + γ )e−2(β+ω)t

∫ t

0
je(β+ω)sψ(s) j−1 ds,

I (2)
j (t) = β(β + ω + γ )

β + ω
e−2(β+ω)t

∫ t

0
j( j − 1)ψ(s) j−2 ds,

I (3)
j (t) = − βγ

β + ω
e−(β+ω)t

∫ t

0
j( j − 1)e−(β+ω)sψ(s) j−2 ds
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and, recalling (5.5), ψ(s) = pω + (1 − pω)e−(β+ω)s . Integrating by parts,

∫ t

0
j( j − 1)ψ(s) j−2 ds

=
[

− 1

β
e(β+ω)s jψ(s) j−1

]t

0
+
∫ t

0

β + ω

β
je(β+ω)sψ(s) j−1 ds,

so

I (2)
j (t) = β + ω + γ

β + ω
e−2(β+ω)t j

[
1 − e(β+ω)tψ(t) j−1

]
− I (1)

j (t).

Also,

I (3)
j (t) = − βγ

β + ω
e−(β+ω)t j

[

− 1

(β + ω)(1 − pω)
ψ(s) j−1

]t

0

= γ

β + ω
e−(β+ω)t j

[
ψ(t) j−1 − 1

]
.

It then follows using (D.24) and (D.21) that, for j = 0, 1, . . .,

(
p Φ̃Y X (t, u)

)

j
= I (1)

j (t − u) + I (2)
j (t − u) + I (3)

j (t − u) (D.25)

= e−(β+ω)(t−u)

(
(β + ω + γ )e−(β+ω)(t−u) − γ

)

β + ω
j

− e−(β+ω)(t−u)ψ(t − u) j−1 j . (D.26)

E Calculation of �2
MR(ˇ,!,�)

Recall (6.10) for σ 2
MR(β, ω, γ ), where σ 2

1 , σ 2
2 , . . . , σ 2

5 are given by (6.11). We first
obtain closed-form expressions for the integrands in the definitions of σ 2

1 , σ 2
2 , . . . , σ 2

5 ,
then evaluate the integrals as a function of τ̃ and finally show that the expression for
σ 2
MR(β, ω, γ ) reduces to that given in Proposition 6.1.

E.1 Integrands

We determine the integrands for σ 2
1 , σ 2

2 , . . . , σ 2
5 in reverse order.

E.1.1 Integral for �2
5

For i = 0, 1, . . ., it follows from (3.5), (6.17) and (6.19) that

c(τ̃ , u)(l(5)i )� = i[hR(τ̃ , u) − hI (τ̃ , u)] = −ib(τ̃ )e−(β+ω)(τ̃−u),
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so, using (4.1) and recalling (5.9) for η̃E (t),

∞∑

i=0

(
c(τ̃ , u)(l(5)i )�

)2
β̃

(5)
l (w̃(u)) =

∞∑

i=0

i2b(τ̃ )2e−2(β+ω)(τ̃−u)γ ỹi (u)
η̃E (u)

ỹE (u)

= γμDb(τ̃ )2e−2(β+ω)τ̃ ỹ
(2)
E (u)

ỹE (u)
,

where ỹ(2)
E (u) = ∑∞

i=1 i
2 ỹi (u). Thus, using (6.11),

σ 2
5 = γμDb(τ̃ )2e−2(β+ω)τ̃

∫ τ̃

0

ỹ(2)
E (u)

ỹE (u)
du. (E.1)

E.1.2 Integral for �2
4

For i = 1, 2, . . ., it follows from (3.4), (6.17) and (6.19) that

c(τ̃ , u)(l(4)i )� = −hI (τ̃ , u) − hR(τ̃ , u) = b(τ̃ )e−(β+ω)(τ̃−u) − 2hI (τ̃ , u),

so, using (4.1),

∞∑

i=1

(
c(τ̃ , u)(l i (4) )

�)2β̃(4)
l (w̃(u))

=
∞∑

i=1

(
b(τ̃ )e−(β+ω)(τ̃−u) − 2hI (τ̃ , u)

)2
(β + ω)i ỹi (u)

z̃E (u)

ỹE (u)

= (β + ω)
(
b(τ̃ )e−(β+ω)(τ̃−u) − 2hI (τ̃ , u)

)2
z̃E (u).

Thus, using (6.11),

σ 2
4 =

∫ τ̃

0
(β + ω)

(
b(τ̃ )e−(β+ω)(τ̃−u) − 2hI (τ̃ , u)

)2
z̃E (u) du. (E.2)

E.1.3 Integral for �2
3

For i, j = 1, 2, . . ., it follows from (3.3), (6.17) and (6.20) that

c(τ̃ , u)(l(3)i j )� = −[2hI (τ̃ , u) + ĉ j (τ̃ , u)],

where ĉ j (τ̃ , u) = c̃ j (τ̃ , u) − c̃ j−1(τ̃ , u). Hence, using (4.1),

∞∑

i=1

∞∑

j=1

(
c(τ̃ , u)(l(3)i j )�

)2
β̃

(3)
l (w̃(u)) = ω

∞∑

j=1

(
2hI (τ̃ , u) + ĉ j (τ̃ , u)

)2
j x̃ j (u),
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and, using (6.11),

σ 2
3 = ω

∫ τ̃

0

∞∑

j=1

(
2hI (τ̃ , u) + ĉ j (τ̃ , u)

)2
j x̃ j (u) du. (E.3)

E.1.4 Integral for �2
2

For i, j = 1, 2, . . ., it follows from (3.2) and (6.17) that

c(τ̃ , u)(l(2)i j )� = −2hI (τ̃ , u),

so, using (4.1),

∞∑

i=1

∞∑

j=1

(
c(τ̃ , u)(l(2)i j )�

)2
β̃

(2)
l (w̃(u)) = 4hI (τ̃ , u)2(β + ω)ỹE (u),

and, using (6.11),

σ 2
2 = 4(β + ω)

∫ τ̃

0
hI (τ̃ , u)2 ỹE (u) du. (E.4)

E.1.5 Integral for �2
1

For i, j = 1, 2, . . ., it follows from (3.1), (6.17) and (6.20) that

c(τ̃ , u)(l(1)i j )� = −[2hI (τ̃ , u) + c̃ j (τ̃ , u)],
so, using (4.1),

∞∑

i=1

∞∑

j=1

(
c(τ̃ , u)(l(1)i j )�

)2
β̃

(1)
l (w̃(u)) = β

∞∑

j=1

(
2hI (τ̃ , u) + c̃ j (τ̃ , u)

)2
j x̃ j (u),

and, using (6.11),

σ 2
1 = β

∫ τ̃

0

∞∑

j=1

(
2hI (τ̃ , u) + c̃ j (τ̃ , u)

)2
j x̃ j (u) du. (E.5)

E.2 Evaluation of integrals

Recall that η̃E (u) = x̃E (u) + ỹE (u) + z̃E (u). Then adding (E.2)–(E.5) gives,

4∑

i=1

σ 2
i =

7∑

i=1

Ii , (E.6)
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where

I1 = 4(β + ω)

∫ τ̃

0
hI (τ̃ , u)2η̃E (u) du, (E.7)

I2 = −4(β + ω)b(τ̃ )

∫ τ̃

0
hI (τ̃ , u)e−(β+ω)(τ̃−u) z̃E (u) du, (E.8)

I3 = (β + ω)b(τ̃ )2
∫ τ̃

0
e−2(β+ω)(τ̃−u) z̃E (u) du, (E.9)

I4 = 4ω
∫ τ̃

0
hI (τ̃ , u)

∞∑

j=1

ĉ j (τ̃ , u) j x̃ j (u) du, (E.10)

I5 = ω

∫ τ̃

0

∞∑

j=1

ĉ j (τ̃ , u)2 j x̃ j (u) du, (E.11)

I6 = 4β
∫ τ̃

0
hI (τ̃ , u)

∞∑

j=1

c̃ j (τ̃ , u) j x̃ j (u) du, (E.12)

I7 = β

∫ τ̃

0

∞∑

j=1

c̃ j (τ̃ , u)2 j x̃ j (u) du. (E.13)

Recalling (5.9), (5.10) and (6.18) allows us to evaluate immediately I1, I2 and I3:

I1 =4μDb(τ̃ )2e−2(β+ω)τ̃

β + ω

[

γ 2τ̃ − 2γ (β + ω + γ )

β + ω

(
1 − e−(β+ω)τ̃

)

+ (β + ω + γ )2

2(β + ω)

(
1 − e−2(β+ω)τ̃

)]

, (E.14)

I2 = − 4
γμDb(τ̃ )2e−(β+ω)τ̃

β + ω

[
γ τ̃e−(β+ω)τ̃

− (β + ω + γ )e−(β+ω)τ̃ + γ

β + ω

(
1 − e−(β+ω)τ̃

)

+β + ω + γ

2(β + ω)

(
1 − e−2(β+ω)τ̃

)]

, (E.15)

I3 =γμDb(τ̃ )2e−(β+ω)τ̃

β + ω

{
1 − e−(β+ω)τ̃

[
1 + (β + ω)τ̃

]}
. (E.16)

For j, k = 0, 1, . . ., let j[k] = j( j−1) . . . ( j−k+1) denote a falling factorial, with
the convention that j[0] = 1. To calculate I4, I5, I6 and I7, observe first using (5.2)
that, for θ ∈ [0, 1] and k = 1, 2, . . .,

123



F. Ball et al.

∞∑

j=1

j[k] x̃ j (u)θ j−k =
∞∑

j=k

j !
( j − k)!θ

j−k e
−(β+ω) ju

j ! f ( j)
Dε

(
pω

[
1 − e−(β+ω)u

])

= e−(β+ω)ku
∞∑

j=k

[
θe−(β+ω)u

] j−k

( j − k)! f ( j)
Dε

(
pω

[
1 − e−(β+ω)u

])

= e−k(β+ω)u f (k)
Dε

(
θe−(β+ω)u + pω

[
1 − e−(β+ω)u

])
, (E.17)

and that

e−(β+ω)uψ(τ̃ − u) + pω

[
1 − e−(β+ω)u

]
= ψ(τ̃ ).

Thus, using (E.17) with θ = ψ(τ̃ − u) and k = 1, 2,

∞∑

j=1

c̃ j (τ̃ , u) j x̃ j (u)

= ψ(τ̃ − u)e−(β+ω)u f ′
Dε

(ψ(τ̃ )) − b(τ̃ )e−(β+ω)(τ̃−u)
[
e−(β+ω)u f ′

Dε
(ψ(τ̃ ))

+ψ(τ̃ − u)e−2(β+ω)u f (2)
Dε

(ψ(τ̃ ))
]

= ψ(τ̃ − u)e−(β+ω)u
[
f ′
Dε

(ψ(τ̃ )) − b(τ̃ )e−(β+ω)τ̃ f (2)
Dε

(ψ(τ̃ ))
]

− b(τ̃ )e−(β+ω)τ̃ f ′
Dε

(ψ(τ̃ ))

and

∞∑

j=1

c̃ j−1(τ̃ , u) j x̃ j (u)

=
∞∑

j=1

j x̃ j (u)ψ(τ̃ − u) j−1 − b(τ̃ )e−(β+ω)(τ̃−u)
∞∑

j=2

j( j − 1)x̃ j (u)ψ(τ̃ − u) j−2

= e−(β+ω)u
[
f ′
Dε

(ψ(τ̃ )) − b(τ̃ )e−(β+ω)τ̃ f (2)
Dε

(ψ(τ̃ ))
]
.

Hence, recalling (6.18),

I4 + I6 =4
{
β
[
f ′
Dε

(ψ(τ̃ )) − b(τ̃ )e−(β+ω)τ̃ f (2)
Dε

(ψ(τ̃ ))
]
e−(β+ω)τ̃

−4(β + ω)b(τ̃ )e−(β+ω)τ̃ f ′
Dε

(ψ(τ̃ ))
}
I8, (E.18)
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where

I8 =
∫ τ̃

0
hI (τ̃ , u) du

= − b(τ̃ )

β + ω

[
γ
(
1 − e−(β+ω)τ̃

)

β + ω
− (β + ω + γ )

(
1 − e−2(β+ω)τ̃

)

2(β + ω)

]

. (E.19)

Turning to I5 and I7, note that

c̃ j (τ̃ , u) = ψ(τ̃ − u) j−1
(
ψ(τ̃ − u) − b(τ̃ ) je−(β+ω)(τ̃−u)

)
, (E.20)

so

∞∑

j=1

c̃ j (τ̃ , u)2 j x̃ j (u) = ψ(τ̃ − u)2S1(τ̃ , u) − 2b(τ̃ )ψ(τ̃ − u)e−(β+ω)(τ̃−u)S2(τ̃ , u)

+ b(τ̃ )2e−2(β+ω)(τ̃−u)S3(τ̃ , u),

where

Sk(τ̃ , u) =
∞∑

j=1

ψ(τ̃ − u)2( j−1) j k x̃ j (u) (k = 1, 2, 3).

Let
ψ2(τ̃ , u) = e−(β+ω)uψ(τ̃ − u)2 + pω

(
1 − e−(β+ω)u

)
. (E.21)

Then, since j2 = j[2] + j and j3 = j[3] + 3 j[2] + j , it follows using (E.17) that

S1(τ̃ , u) = e−(β+ω)u f ′
Dε

(ψ2(τ̃ , u)),

S2(τ̃ , u) = ψ(τ̃ − u)2e−2(β+ω)u f (2)
Dε

(ψ2(τ̃ , u)) + e−(β+ω)u f ′
Dε

(ψ2(τ̃ , u)),

S3(τ̃ , u) = ψ(τ̃ − u)4e−3(β+ω)u f (3)
Dε

(ψ2(τ̃ , u))

+ 3ψ(τ̃ − u)2e−2(β+ω)u f (2)
Dε

(ψ2(τ̃ , u)) + e−(β+ω)u f ′
Dε

(ψ2(τ̃ , u)),

whence

∞∑

j=1

c̃ j (τ̃ , u)2 j x̃ j (u)

=
[
ψ(τ̃ − u) − b(τ̃ )e−(β+ω)(τ̃−u)

]2
e−(β+ω)u f ′

Dε
(ψ2(τ̃ , u))

+ b(τ̃ )ψ(τ̃ − u)2e−(β+ω)(τ̃+u)
[
3b(τ̃ )e−(β+ω)(τ̃−u) − 2ψ(τ̃ − u)

]
f (2)
Dε

(ψ2(τ̃ , u))

+ b(τ̃ )2ψ(τ̃ − u)4e−(β+ω)(2τ̃+u) f (3)
Dε

(ψ2(τ̃ , u)). (E.22)
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Further, (E.20) implies

ĉ j (τ̃ , u) = ψ(τ̃ − u) j−2
{
ψ(τ̃ − u)

[
ψ(τ̃ − u) − 1 − b(τ̃ )e−(β+ω)(τ̃−u)

]

−( j − 1)b(τ̃ )(ψ(τ̃ − u) − 1)e−(β+ω)(τ̃−u)
}

,

so

∞∑

j=1

ĉ j (τ̃ , u)2 j x̃ j (u)

=
[
ψ(τ̃ − u) − 1 − b(τ̃ )e−(β+ω)(τ̃−u)

]2
e−(β+ω)u f ′

Dε
(ψ2(τ̃ , u))

− 2b(τ̃ )ψ(τ̃ − u)(ψ(τ̃ − u) − 1)
[
ψ(τ̃ − u) − 1

− b(τ̃ )e−(β+ω)(τ̃−u)
]
e−(β+ω)(τ̃+u) f (2)

Dε
(ψ2(τ̃ , u))

+ b(τ̃ )2(ψ(τ̃ − u) − 1)2
[
ψ(τ̃ − u)2e−(β+ω)(2τ̃+u) f (3)

Dε
(ψ2(τ̃ , u))

+ e−2(β+ω)τ̃ f (2)
Dε

(ψ2(τ̃ , u))
]
, (E.23)

To calculate the integral in (E.1) for σ 2
5 , let

ỹ[2]
E (t) =

∞∑

i=2

i(i − 1)ỹi (t) (E.24)

and note that

∞∑

i=2

[
(i + 1)i(i − 1)ỹi+1(t) − i2(i − 1)ỹi (t)

]
= −2 ỹ[2]

E (t).

Multiplying (4.4) by i(i − 1) and summing over i = 2, 3, . . . yields, after recalling
(5.9) and invoking (E.17) with θ = 1 and k = 3, that

d ỹ[2]
E

dt
+ 2(β + ω)ỹ[2]

E = −μDe
−2(β+ω)t [2(β + ω) + γ ] ỹ

[2]
E

ỹE
+ βe−3(β+ω)t f (3)

Dε
(ψ(t)) ,

so

d

dt

(
e2(β+ω)t ỹ[2]

E (t)
)

= −μD[2(β + ω) + γ ] ỹ
[2]
E (t)

ỹE (t)
+ βe−(β+ω)t f (3)

Dε
(ψ(t))

= −μD[2(β + ω) + γ ] ỹ
[2]
E (t)

ỹE (t)
− d

dt

[
f (2)
Dε

(ψ(t))
]
,
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since pω = ω
β+ω

. Thus,

∫ τ̃

0

ỹ[2]
E (u)

ỹE (u)
du =

[

− 1

μD[2(β + ω) + γ ]
(
e2(β+ω)u ỹ[2]

E (u) + f (2)
Dε

(ψ(u))
)]τ̃

0

= 1

μD[2(β + ω) + γ ]
[
ỹ[2]
E (0) + f (2)

Dε
(1) − f (2)

Dε
(ψ(τ̃ ))

]
,

as ỹi (τ̃ ) = 0 (i = 1, 2, . . .). Using (E.24) gives ỹ[2]
E (0) = ∑∞

i=2 i(i − 1)εi
and differentiating (5.3) twice yields f (2)

Dε
(1) = ∑∞

i=2 i(i − 1)(pi − εi ). Thus,

ỹ[2]
E (0) + f (2)

Dε
(1) = ∑∞

i=2 i(i − 1)pi = f ′′
D(1). Further, ỹ(2)

E (u) = ỹ[2]
E (u) + ỹE (u),

so
∫ τ̃

0
ỹ(2])
E (u)

ỹE (u)
du = τ̃ + ∫ τ̃

0
ỹ[2]
E (u)

ỹE (u)
du and using (E.1),

σ 2
5 = γμDb(τ̃ )2e−2(β+ω)τ̃

{

τ̃ + 1

μD[2(β + ω) + γ ]
[
f ′′
D(1) − f (2)

Dε
(ψ(τ̃ ))

]}

.

(E.25)

E.3 Expression for�2
MR(ˇ,!,�)

We now use (6.10), (E.6) and (E.25) to obtain an expression for σ 2
MR(β, ω, γ ).

Let z = e−(β+ω)τ̃ . Then, since τ̃ is the unique solution in (0,∞) of (5.24), z is the
unique solution in [0, 1) of (5.25). Recall that ψ̃(z) = pω + (1− pω)z. It then follows
from (6.13) that

a(τ̃ ) = z2
[
β f ′′

Dε

(
ψ̃(z)

)− (β + ω + γ )μD
]
,

whence, using b(τ̃ ) = a(τ̃ )−1β x̃E (τ̃ ) and (5.4)

b(τ̃ ) = βz f ′
Dε

(
ψ̃(z)

)

z2
[
β f ′′

Dε

(
ψ̃(z)

)− (β + ω + γ )μD

]

=
β
[

(β+ω+γ )z−γ
β+ω

]
μD

z
[
β f ′′

Dε

(
ψ̃(z)

)− (β + ω + γ )μD

] , (E.26)

using (5.25), so b(τ̃ ) = b̃(z) defined at (6.3). For future reference, note that (E.26)
implies

b(τ̃ )z f ′′
Dε

(
ψ̃(z)

) = f ′
Dε

(
ψ̃(z)

)+ (β + ω + γ )

β
zb(τ̃ )μD (E.27)

=
[

(β + ω + γ )

(
1

β + ω
+ b(τ̃ )

β

)

z − γ

β + ω

]

μD. (E.28)
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Adding (E.14) and (E.15) yields, after substituting z = e−(β+ω)τ̃ ,

I1 + I2 =2
μDb(τ̃ )2z(1 − z)

(β + ω)2

[
γ (γ − β − ω)

+ (β + ω + γ )(β + ω − 2γ )z + (β + ω + γ )2z2
]
.

(E.29)

Using (E.18) and (E.27),

I4 + I6 = −4
[
(β + ω + γ )z2b(τ̃ )μD − 4(β + ω)zb(τ̃ ) f ′

Dε

(
ψ̃(z)

)]
I8

= −4zb(τ̃ )μD
[
(2(β + ω + γ )z − γ

]
I8,

using (5.25). Substituting for I8 from (E.19) and rearranging then gives

I4 + I6 = 2
b(τ̃ )2z(1 − z)

(β + ω)2

[
2(β + ω + γ )z − γ

] [
γ − β − ω − (β + ω + γ )z

]
μD.

(E.30)
Adding (E.29) and (E.30) yields after a little algebra that

I1 + I2 + I4 + I6

= 2
(β + ω + γ )[γ − β − ω − (β + ω + γ )z]

(β + ω)2
μDb(τ̃ )2z2(1 − z). (E.31)

Adding (E.16) and (E.25) yields

I3 + σ 2
5 = γ

β + ω
μDb(τ̃ )2z(1 − z) + γ

2(β + ω) + γ
b(τ̃ )2z2

[
f ′′
D(1) − f ′′

Dε

(
ψ̃(z)

)]
.

Substituting from (E.28) and noting that f ′′
D(1) = σ 2

D + μ2
D − μD yields, after a little

algebra, that

I3 + σ 2
5 = γ

β(β + ω)
μDb(τ̃ )2z [β − (2β + ω)z]

+ γ

β[2(β + ω) + γ ]b(τ̃ )2z2
[
β(σ 2

D + μ2
D) + ωμD

]

− γ [(β + ω + γ )z − γ ]z
[2(β + ω) + γ ](β + ω)

μDb(τ̃ ). (E.32)

Adding (E.31) and (E.32), and comparing with (6.2), shows that

I1 + I2 + I3 + I4 + I6 + σ 2
5 = σ 2

MR(β, ω, γ ) − IA − IB − IC − ID, (E.33)

with IA, IB, IC and ID given by (6.4)–(6.7). Making the substitution v = e−(β+ω)u

in the integrals in (E.11) and (E.13), using the expressions (E.22) and (E.23) for the
respective integrands, shows that
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I5 + I7 = IA + IB + IC + ID. (E.34)

The expression (6.2) for = σ 2
MR(β, ω, γ ) then follows using (6.10) and (E.6).

F Proof of Lemma 1

For k = 1, 2, . . ., let X (γ,ω)

k = k − Y (γ,ω)

k and X (γ+ω,0)
k = k − Y (γ+ω,0)

k . Thus, for

example, X (γ,ω)

k is the number of neighbours an infective, i∗ say, with k susceptible
neighbours fails to infect in the dropping model. For k, r ∈ Z+, let k[r ] = k(k −
1) . . . (k − r + 1) denote a falling factorial, with the convention that k[0] = 1. Further

let μ(γ,ω)

k,[r ] = E
[
X (γ,ω)

k,[r ]
]
, where X (γ,ω)

k,[r ] = X (γ,ω)

k (X (γ,ω)

k − 1) . . . (X (γ,ω)

k − r + 1), be

the r th factorial moment of X (γ,ω)

k and define μ
(γ+ω,0)
k,[r ] analogously for the modified

model. Note that μ(γ,ω)

k,[r ] = μ
(γ+ω,0)
k,[r ] = 0 for all r > k. We prove first that

μ
(γ,ω)

k,[r ] ≤ μ
(γ+ω,0)
k,[r ] for all k, r , (F.1)

with strict inequality for 2 ≤ r ≤ k, and then consider the Taylor expansions of
f (γ,ω)

k (s) and f (γ+ω,0)
k (s) about s = 1 to prove Lemma 1.

To determine the factorial moment μ
(γ,ω)

k,[r ] , fix k ≥ 1, give the k neighbours of i∗

the labels 1, 2, . . . , k and let A(γ,ω)

k be the set of neighbours that are not infected by

i∗. Then, for any B ⊆ {1, 2, . . . , k}, P
(
A(γ,ω)

k = B
)
depends on B only through

its size |B|, so A(γ,ω)

k is a symmetric sampling procedure (Martin-Löf 1986). It

follows from Lemma 1 in that paper that μ
(γ,ω)

k,[r ] = k[r ]P(γ,ω)

k,r (r = 0, 1, . . . , k),

where P(γ,ω)

k,r is the probability that no one in any fixed set of r neighbours of i∗

is infected by i∗, with P(γ,ω)

k,0 = 1. Similarly, in an obvious notation, μ
(γ+ω,0)
k,[r ] =

k[r ]P(γ+ω,0)
k,r (r = 0, 1, . . . , k). To prove (F.1), we assume without loss of generality

that γ = 1, since otherwise time can be rescaled linearly so that γ = 1. Note that

P(1,ω)
k,r = P(1,ω)

r ,r = P
(
Y (1,ω)
r = 0

)
, so using (8.1),

P(1,ω)
k,r = E

[(

1 − β

β + ω

(
1 − e−(β+ω)I

))r]

= E

[(
ω

β + ω
+ β

β + ω
e−(β+ω)I

)r]

=
r∑

i=0

(
r

i

)(
ω

β + ω

)r−i (
β

β + ω

)i

E
[
e−i(β+ω)I

]

=
r∑

i=0

(
r

i

)(
ω

β + ω

)r−i (
β

β + ω

)i 1

1 + i(β + ω)
,
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since I ∼ Exp(1). A similar but simpler argument using (8.2) yields

P(1+ω,0)
k,r = 1 + ω

1 + ω + rβ
.

Thus μ
(1,ω)
k,[r ] ≤ μ

(1+ω,0)
k,[r ] for all k, r if and only if

r∑

i=0

(
r

i

)(
ω

β + ω

)r−i (
β

β + ω

)i 1

1 + i(β + ω)
≤ 1 + ω

1 + ω + rβ
, (F.2)

(r = 0, 1, . . .), which we now show.
First note that both sides of (F.2) equal 1 when r = 0. Suppose r > 0. Then

r∑

i=0

(
r

i

)(
ω

β + ω

)r−i (
β

β + ω

)i 1

1 + i(β + ω)
≤ 1 + ω

1 + ω + rβ

⇐⇒
r∑

i=0

(
r

i

)(
ω

β + ω

)r−i (
β

β + ω

)i [

1 − i(β + ω)

1 + i(β + ω)

]

≤ 1 − rβ

1 + ω + rβ

⇐⇒
r∑

i=0

(
r

i

)(
ω

β + ω

)r−i (
β

β + ω

)i i(β + ω)

1 + i(β + ω)
≥ rβ

1 + ω + rβ

⇐⇒ rβ
r∑

i=1

(
r − 1

i − 1

)(
ω

β + ω

)r−i (
β

β + ω

)i−1 1

1 + i(β + ω)
≥ rβ

1 + ω + rβ

⇐⇒
r−1∑

i=0

(
r − 1

i

)(
ω

β + ω

)r−1−i (
β

β + ω

)i 1

1 + (i + 1)(β + ω)
≥ 1

1 + ω + rβ

⇐⇒ H(r) ≥ 0,

where

H(r)

=
r−1∑

i=0

(
r − 1

i

)(
ω

β + ω

)r−1−i (
β

β+ω

)i [ 1

1+(i + 1)(β + ω)
− 1

1 + ω + rβ

]

.

Now H(1) = 0, so μ
(1,ω)
k,[1] = μ

(1+ω,0)
k,[1] (k = 0, 1, . . .), as noted (in a different

notation) after (8.2). For r ≥ 2,

H(r) =
r−1∑

i=0

(
r − 1

i

)(
ω

β + ω

)r−1−i (
β

β + ω

)i [
(r − 1 − i)β − iω

[1 + (i + 1)(β + ω)](1 + ω + rβ)

]

= 1

1 + ω + rβ

(
1

β + ω

)r−1

H̃(r),
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where

H̃(r) =
r−2∑

i=0

(
r − 1

i

)

ωr−1−iβ i (r − 1 − i)β

1 + (i + 1)(β + ω)

−
r−1∑

i=1

(
r − 1

i

)

ωr−1−iβ i iω

1 + (i + 1)(β + ω)

=
r−2∑

i=0

(
r − 1

i

)

ωr−1−iβ i+1 (r − 1 − i)

1 + (i + 1)(β + ω)

−
r−2∑

i=0

(
r − 1

i + 1

)

ωr−1−iβ i+1 i + 1

1 + (i + 2)(β + ω)

=(r − 1)
r−2∑

i=0

(
r − 2

i

)

ωr−1−iβ i+1
[

1

1 + (i + 1)(β + ω)
− 1

1 + (i + 2)(β + ω)

]

>0.

Thus, H(r) > 0 for r = 2, 3, . . ., proving (F.1).
Turning to Lemma 1 note that for k = 1, 2, . . . and s �= 0, f (γ,ω)

k (s) =
sk f̂ (γ,ω)

k (s−1), where f̂ (γ,ω)

k (s) = E
[
sX

(γ,ω)
k

]
(s ∈ R) is the PGF of X (γ,ω)

k . Sim-

ilarly, in an obvious notation, f (γ+ω,0)
k (s) = sk f̂ (γ+ω,0)

k (s−1). Now, for s < 1,

f̂ (γ,ω)

k (s−1) =
k∑

r=0

μ
(γ,ω)

k,[r ] (s−1 − 1)r ≤
k∑

r=0

μ
(γ+ω,0)
k,[r ] (s−1 − 1)r = f̂ (γ+ω,0)

k (s−1),

with strict inequality if k ≥ 2. Thus, f (γ,ω)

k (s) ≤ f (γ+ω,0)
k (s) for all s ∈ (0, 1),

again with strict inequality if k ≥ 2, proving Lemma 1 for s ∈ (0, 1). The lemma
holds trivially when s = 1 since f (γ,ω)

k (1) = f (γ+ω,0)
k (1) = 1. Finally, note

that f (γ,ω)

k (0) = P(Y (γ,ω)

k = 0) = P(X (γ,ω)

k = k) = μ
(γ,ω)

k,[k] /k[k] and, similarly,

f (γ+ω,0)
k (0) = μ

(γ+ω,0)
k,[k] /k[k], so (F.1) implies the lemma holds also when s = 0.

GDerivation of asymptotic variances in Conjecture 9.1

In this appendix we derive the expressions for σ 2
MRND(β, γ ) and σ 2

NSW(β, γ ) given
in Conjecture 9.1 by setting ω = 0 in Conjectures 6.1 and 7.1. We consider first the
epidemic on an MR random network.

From (E.11) and (E.34), IA + IB + IC + ID = I7, since ω = 0. We derive a
closed-form expression for I7 when ω = 0. Note that now pω = 0, so using (5.5)
and (E.21), ψ(t) = e−βt and ψ2(τ̃ , u) = e−β(2τ̃−u). Substituting these into (E.22)
yields
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∞∑

j=1

c̃ j (τ̃ , u)2 j x̃ j (u) = (1 − b(τ̃ ))2e−β(2τ̃−u) f ′
Dε

(
e−β(2τ̃−u)

)

+ b(τ̃ )(3b(τ̃ ) − 2)e−2β(2τ̃−u) f (2)
Dε

(
e−β(2τ̃−u)

)

+ b(τ̃ )2e−3β(2τ̃−u) f (3)
Dε

(
e−β(2τ̃−u)

)
. (G.1)

For k = 0, 1, . . ., let

Jk =
∫ τ̃

0
e−kβ(2τ̃−u) f (k)

Dε

(
e−β(2τ̃−u)

)
du.

Integrating by parts, for k = 1, 2, . . .,

Jk =
[

e−(k−1)β(2τ̃−u) 1

β
f (k−1)
Dε

(
e−β(2τ̃−u)

)]τ̃

0

−
∫ τ̃

0
(k − 1)βe−(k−1)β(2τ̃−u) 1

β
f (k−1)
Dε

(
e−β(2τ̃−u)

)
du

= 1

β

[
e−(k−1)βτ̃ f (k−1)

Dε

(
e−βτ̃

)
− e−2(k−1)βτ̃ f (k−1)

Dε

(
e−2βτ̃

)]
− (k − 1)Jk−1,

(G.2)

so, setting k = 1,

J1 = 1

β

[
fDε

(
e−βτ̃

)
− fDε

(
e−2βτ̃

)]
. (G.3)

Substituting (G.1) into (E.13), and using (G.3) and (G.2) with k = 2, 3 yields

I7 = fDε

(
e−βτ̃

)
− fDε

(
e−2βτ̃

)

+ b(τ̃ )(b(τ̃ ) − 2)
[
e−βτ̃ f ′

Dε

(
e−βτ̃

)
− e−2βτ̃ f ′

Dε

(
e−2βτ̃

)]

+ b(τ̃ )2
[
e−2βτ̃ f ′′

Dε

(
e−βτ̃

)
− e−4βτ̃ f ′′

Dε

(
e−2βτ̃

)]
. (G.4)

Recall that z = e−βτ̃ and b̃(z) = b(τ̃ ). Setting ω = 0 in (E.28) gives

b̃(z)z f ′′
Dε

(z) =
[

(β + γ )(1 + b̃(z))z − γ

β

]

μD.

Substituting these into (G.4) and using (9.1) yields

I7 = fDε (z) − fDε

(
z2
)

− b̃(z)(b̃(z) − 2)z2 f ′
Dε

(
z2
)

− b̃(z)2z4 f ′′
Dε

(
z2
)

+ b̃(z)2z

(
2(β + γ )z − γ

β

)

μD − b̃(z)z

(
(β + γ )z − γ

β

)

μD .
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Setting ω = 0 in (6.2) and recalling that now IA + IB + IC + ID = I7 then yields

σ 2
MRND(β, γ ) = fDε (z) − fDε

(
z2
)

− b̃(z)(b̃(z) − 2)z2 f ′
Dε

(
z2
)

− b̃(z)2z4 f ′′
Dε

(
z2
)

+
(

γ

2β + γ

)

b̃(z)2z2(σ 2
D + μ2

D)

+ 2

(
γ − (β + γ )z

β

)(
β + γ

2β + γ

)

zb̃(z)μD

+ 2

(
γ − (β + γ )z

β

)2

z2b̃(z)2μD. (G.5)

Setting ω = 0 in (7.27) shows that h(β, γ, z) = zb̃(z), where h(β, γ, z) is defined
at (9.4). Further fDε (z) = 1 − ρ; see immediately after (9.1). The expression (9.3)
for σ 2

MRND(β, γ ) then follows immediately from (G.5).
Turning to the epidemic on an NSW random network, setting ω = 0 in (7.7) and

noting that then ψ̃(z) = z, yields

σ 2
0 (β, 0, γ ) = fD

(
z2
)

− (1 − ρ)2 + b̃(z)2z4 f ′′
D

(
z2
)

+ b̃(z)(b̃(z) − 2)z2 f ′
Dε

(
z2
)

+ b̃(z)2z2
(

(β + γ )z − γ

β

)2 (
σ 2
D + μ2

D

)

− 2

(
(β + γ )z − γ

β

)(
(β + γ )z − γ

β
+ (β + γ )

β
z

)

z2b̃(z)2μD .

(G.6)

Setting ω = 0 in (7.6) shows that σ 2
NSW(β, γ ) is given by the sum of the right-

hand sides of (G.5), with Dε replaced by D, and (G.6). The expression (9.6) for
σ 2
NSWND(β, γ ) now follows since fD(z) = 1 − ρ and h(β, γ, z) = zb̃(z).

HODE initial conditions for the epidemic on an NSW graph

In this appendix we derive the initial conditions ΣNSW(0) that are given in Sect. 10.1.
We assume that the number of initial infectives is i N0 = [εN ] (or that i N0 is any
function of N such that limN→∞ N−1i N0 = ε) and that these individuals are chosen
uniformly from the population. Since there is nothing special about the labelling of the
individuals 1, 2, . . . , N in the population we can assume that individuals 1, 2, . . . , i N0
are initially infected.

First consider the term σxi ,xi (0) = limN→∞ N−1var(XN
i (0)). Writing XN

i (0) as a
sum of indicator variables, we use the independence of different individuals’ degrees
to find that

var(XN
i (0)) = var

(
N∑

k=1

1{indiv k is deg i& susc}

)
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= var

⎛

⎜
⎝

N∑

k=i N0 +1

1{indiv k is deg i}

⎞

⎟
⎠

=
N∑

k=i N0 +1

var
(
1{indiv k is deg i}

)

= (N − i N0 )pi (1 − pi ),

so
σxi ,xi (0) = lim

N→∞ N−1var(XN
i (0)) = (1 − ε)pi (1 − pi )

for all i . Considering infectives instead, essentially the same arguments establish that

σyi ,yi (0) = lim
N→∞ N−1var(Y N

i (0)) = εpi (1 − pi ).

For the covariances we use the same independence and cov(X ,Y ) = E[XY ] −
E[X ]E[Y ] to find that, for i �= j ,

cov(XN
i (0), XN

j (0)) = cov

(
N∑

k=1

1{indiv k is deg iand susc},
N∑

l=1

1{indiv l is deg jand susc}

)

= cov

⎛

⎜
⎝

N∑

k=i N0 +1

1{indiv k is deg i},
N∑

l=i N0 +1

1{indiv l is deg j}

⎞

⎟
⎠

=
N∑

k=i N0 +1

N∑

l=i N0 +1

cov(1{indiv k is deg i},1{indiv l is deg j})

=
N∑

k=i N0 +1

cov(1{indiv k is deg i},1{indiv k is deg j})

= (N − i N0 )(0 − pi p j ) = −(N − i N0 )pi p j ,

so that we have

σxi ,x j (0) = lim
N→∞ N−1cov(XN

i (0), XN
j (0)) = −(1 − ε)pi p j .

The same calculations for cov(Y N
i (0),Y N

j (0)) yield

σyi ,y j (0) = lim
N→∞ N−1cov(Y N

i (0),Y N
j (0)) = −εpi p j
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for i �= j . Next, for all i, j ,

cov(XN
i (0),Y N

j (0)) = cov

(
N∑

k=1

1{indiv k is deg i and susc},
N∑

l=1

1{indiv l is deg j & inf}

)

= cov

⎛

⎜
⎝

N∑

k=i N0 +1

1{indiv k is deg i},
i N0∑

l=1

1{indiv l is deg j}

⎞

⎟
⎠

=
N∑

k=i N0 +1

i N0∑

l=1

cov(1{indiv k is deg i},1{indiv l is deg j})

= 0,

by independence of individuals (there are no terms with k = l since the indices take
values in disjoint sets). Thus

σxi ,y j (0) = lim
N→∞ N−1cov(XN

i (0),Y N
j (0)) = 0.

Finally, we have ZN
E (0) = 0, so all (co)variances involving it are zero and remain so

when divided by N , whence for all i we have

σxi ,zE (0) = σyi ,zE (0) = σzE ,zE (0) = 0.
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