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Abstract 
 
The outbreak of an infectious disease in a human population can lead to individuals 
responding with preventive measures in an attempt to avoid getting infected. This 
leads to changes in contact patterns. However, as we show in this paper, rational 
behaviour at the individual level, such as social distancing from infectious contacts, 
may not always be beneficial for the population as a whole. We use epidemic network 
models to demonstrate the potential negative consequences at the population level. 
We take into account the social structure of the population through several network 
models. As the epidemic evolves, susceptible individuals may distance themselves 
from their infectious contacts. Some individuals replace their lost social connections 
by seeking new ties. If social distancing occurs at high rates at the beginning of an 
epidemic, then this can prevent an outbreak from occurring. However, we show that 
moderate social distancing can worsen the disease outcome, both in the initial phase 
of an outbreak and the final epidemic size. Moreover, the same negative effect can 
arise in real-world networks. Our results suggest that one needs to be careful when 
targeting behavioural changes as they could potentially worsen the epidemic outcome. 
Furthermore, network structure crucially influences the way that individual-level 
measures impact the epidemic at the population level. These findings highlight the 
importance of careful analysis of preventive measures in epidemic models. 
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Main text 
 
 
1. Introduction 
Mathematical models for the spread of infections have been successfully used to 
increase understanding of how epidemics may propagate: what are the most important 
features to determine the initial epidemic growth, final epidemic size or endemic 
level? Mathematical models are also useful to evaluate the possible effects on 
epidemic dynamics of preventive measures. This can guide public health officials to 
decide what measures could be put in place to reduce or even stop spreading of a 
disease [1].  
 
To prevent or control an epidemic, public health authorities may implement measures 
by e.g. isolating/treating detected infectious cases or starting a vaccination scheme, 
either before or during the outbreak [1]. In addition, individuals may take their own 
measures to prevent themselves from getting infected, e.g. by wearing face masks, 
taking hygienic measures such as hand washing, or by socially distancing themselves 
from infectious contacts. Such individual behaviour has been observed in e.g. the 
recent Ebola outbreak and the 2009 A/H1N1 epidemic [2-6]. 
 
In general, it is hard to predict the effect of preventive measures without using models 
to guide us. Epidemic dynamics are highly nonlinear and therefore preventive 
measures can lead to counter-intuitive effects. Standard epidemic models assume 
human behaviour is not influenced by the epidemic and is constant over time. 
Although it is often recognized that humans do take preventive measures in the course 
of an epidemic, models that incorporate behavioural dynamics are generally much 
harder to analyze. Recently, such models have started to receive more attention, and 
important advances have been made to gain understanding of the effect of different 
behavioural changes on epidemic dynamics [7-10].  
 
A crucial modelling ingredient is the contact pattern in the population as infection is 
transmitted through contacts between susceptible and infectious individuals. Owing to 
challenges in their analysis, the majority of models that consider behavioural 
responses to epidemic dynamics are relatively simple in modelling contact patterns 
[10]. Often the simplest assumption of homogeneous mixing, or some variant, is 
made. This assumption implies that any two individuals rarely meet more than once in 
a large population. To overcome the restriction of the lack of repeated contacts, 
network epidemic models have been proposed to model human contact patterns. This 
class of models have received much attention over the last 20 years or so [11,12]. In 
these models, individuals are socially connected in the network and infection is only 
possible along connections. Network models are also a natural way to incorporate 
heterogeneity in the number of connections that individuals in the population have. 
Throughout this paper, we refer to two individuals that are connected to each other as 
`neighbours'. Exactly what a neighbour is depends on the social structure under 
consideration, e.g. one may think of the neighbours as `colleagues' in workplaces or 
`sexual partners' in sexual networks.  
 
In the current paper we study a network SIR epidemic with preventive social 
distancing. We consider the setting where susceptible individuals distance themselves 



from their neighbours who they find out are infectious, perhaps sometimes simply 
dropping such connections and other times, in their wish to maintain a certain number 
of social connections, by seeking new connections (which we refer to as `rewiring'). 
We study the impact of social distancing on model networks as well as real-world 
networks.  
 
We show that rational preventive individual-level behaviour can have counter-
intuitive negative population-level consequences. From the perspective of an 
individual who distances him/herself from an infectious individual, this preventive 
behaviour is always rational in the sense that it decreases the risk of him/her getting 
infected during the epidemic outbreak (here `always' means for all rewiring and 
dropping rates on all networks). If the social distancing occurs at a high enough rate at 
the beginning of an epidemic, then this can prevent an outbreak from occurring. In 
such cases, the population-level effect is obviously always positive. However, we also 
show that having individuals who rewire away from infectious neighbours and 
possibly replace them with new ties may be harmful for the community as a whole. 
Depending on the network structure of the population, social distancing may in fact 
increase the epidemic threshold parameter from below to above its threshold value, 
making a large outbreak possible where without social distancing it was not. We also 
show that social distancing can increase the final size of the epidemic. It is important 
to stress that these features do not hold for all networks. However, we show that there 
are real-world networks as well as model networks which exhibit these properties. It 
is difficult to characterize completely when such individual preventive behaviour is 
harmful, but it tends to happen more easily if: a) the epidemic threshold parameter for 
an epidemic to take off (for the baseline setting without social distancing) is large, b) 
the network has many individuals with low degree and possibly other groups being 
highly inter-connected, and c) connections are more likely to be rewired than 
dropped. The theoretical findings of our study highlight the importance of taking 
preventive measures into account in epidemic models. 
 
 
2 Model 
 
2.1 SIR epidemic with social distancing on a network 
 
We consider a population in which individuals are socially connected. Two 
individuals that are connected to each other are referred to as neighbours and contacts 
are only made between neighbours. The individuals and the connections between 
them together make up the network structure of the population. The stochastic SIR 
(susceptible-infectious-recovered) epidemic with social distancing on a network is as 
follows. Initially, usually one individual is infectious, we call this individual the index 
case, and all others in the population are susceptible (specific assumptions concerning 
the index case are given later). An individual that gets infected becomes infectious 
and remains so for an exponentially distributed time with mean 1/𝛾. During its 
infectious period an individual transmits infection at a constant rate 𝛽 independently 
to each susceptible neighbour. Moreover, a susceptible individual that has an 
infectious neighbour distances him/herself from this neighbour. The susceptible 
individual then either rewires the connection to an individual chosen uniformly at 
random from the population or drops the connection completely. We model this by a 
social distancing rate 𝜔 and a probability 𝛼 to rewire rather than drop the connection. 



Whenever	a	social	distancing	event	happens,	the	susceptible	individual	
immediately	choses	a	new	neighbour	uniformly	at	random	from	the	entire	
population	with	probability	𝛼,	and	with	the	remaining	probability	1-𝛼	the	
susceptible	individual	simply	drops	the	connection	(so	a	susceptible	individual	
rewires	from	an	infectious	neighbour	at	rate	𝛼𝜔	and	drops	the	connection	at	rate	
(1 − 𝛼)𝜔).	Dropping and rewiring events happen independently between all pairs of 
susceptible and infectious individuals. Note that the probability that a susceptible 
individual distances oneself from a given infectious neighbour before becoming 
infected or the neighbour recovering is 𝜔/(𝛽 + 𝜔 + 𝛾).  For example, for a mean 
infectious period of 1/𝛾 = 5 days and transmission rate 𝛽 = 0.1/day, the probability 
𝜔/(𝛽 + 𝜔 + 𝛾) of social distancing of the susceptible individual before transmission 
or recovery of the infectious neighbour is 0.12 if 𝜔 = 0.04/day and 0.67 for 𝜔 =
0.60/day. The epidemic continues until there is no connected susceptible-infectious 
pair of individuals.  
 
Note that the preventive measure of social distancing is always beneficial from the 
individual perspective. Indeed, a susceptible individual that distances itself from an 
infectious neighbour avoids the risk of getting infected by that particular individual. 
In the case that it chooses to replace that social connection (rewiring), and that new 
neighbour is recovered (and immune), transmission can no longer occur through that 
connection. If the neighbour is susceptible, transmission through that connection 
could occur later on in the epidemic. If the neighbour is infectious, then all that has 
happened from an epidemic point of view is that one infectious neighbour is replaced 
by another one, and the risk of becoming infected is unchanged. Obviously, the most 
beneficial option from the point of view of avoiding getting infected is not to replace 
the connection (corresponding to 𝛼 = 0 and 𝜔 > 0 in the model). At the population 
level this means that there are fewer connections through which the epidemic can 
spread. Therefore, this extreme case of dropping connections is always beneficial 
from both the individual and population perspective. Consequently, provided 
infectives can recover (𝛾 > 0), if most of the social distancing is done through 
dropping connections rather than rewiring them (small 𝛼) then this will also be 
beneficial for the population. 
 
The epidemic with social distancing is studied on two network models as well as 
some real-world networks. The networks are described in Section 2.2 below. Our 
results in Section 3 involve several epidemiological measures for the beginning and 
the end of the epidemic, these concepts are introduced in Section 2.3. 
 
2.2 The networks 
 
2.2.1 Configuration network 
The configuration model is a well-studied network, both within and without the 
context of epidemic models [13-15]. The network is constructed by first defining its 
degree distribution {𝑝5}, where 𝑝5 is the probability that an individual has exactly 𝑑 
connections. In a population of size 𝑛, each of the 𝑛 individuals picks a degree 
independently from {𝑝5} and attaches that many half-edges to itself. Half-edges are 
then paired completely at random and the corresponding individuals are connected in 
the network. By way of this construction, some imperfections may arise, such as self 
loops or multiple connections between some pairs of individuals. However, such 
imperfections become sparse in the network as the population size 𝑛 →∞ if the 



degree distribution has finite variance (see e.g. [16, Theorem 3.1.2] and SI Section 
S5). Under such conditions the asymptotic 𝑛 → ∞ results in our paper hold also if the 
network is conditioned to have no such imperfections (see [17]). Those asymptotic 
results are valid as approximations only for large populations. What constitute large 
depends on many factors but simulations indicate that usually the approximations are 
good for sizes in the low hundreds.  
 
2.2.2 Clique network 
The clique-network model [18] (also referred to as household-network model when 
the unit under consideration is interpreted as a household) has two types of 
connections: global network connections and clique connections. The global network 
structure is obtained through the configuration network with prescribed degree 
distribution {𝑝5}. On top of this, the community is partitioned into distinct units 
(cliques) of size three (see SI Section S2 for a discussion on allowing for various 
clique sizes). The population can be partitioned into cliques by labelling all 
individuals from 1 to 𝑛, and letting the first three individuals make up clique 1, the 
next three individuals make up clique 2, and so on. In the final network, individual 1 
is then connected to all individuals he/she is connected to from the construction of the 
configuration model together with individuals 2 and 3 from the clique construction, 
and similarly for the other individuals.  
 
2.2.3 Real-world networks 
The real-world networks for our studies are taken from the Stanford large network 
dataset collection [19] and SocioPatterns [20,21], where datasets for several different 
networks are freely available. We considered the `arXiv General Relativity 
collaboration network' and the `Facebook social circles network' from [19] and two 
‘Infectious SocioPatterns’ networks from [20]. All networks are undirected. The 
arXiv General Relativity collaboration network describes scientific collaborations 
between authors that submitted papers to the arXiv in the General Relativity and 
Quantum Cosmology category. Edges between nodes represent two co-authors that 
have written a paper together. In the Facebook social circles network, nodes are 
survey participants of the social network website Facebook that were using a specific 
app. Edges between nodes represent the `circles' or `friends lists' of those participants. 
The Infectious SocioPatterns networks describe close-contact interactions between 
visitors of a Science Gallery exhibition in Dublin, where all contacts are aggregated 
over a day. Data was collected over a period of 69 days, we consider two 
representative networks for that period that we refer to as SG1 and SG2 [20,21]. The 
networks are described in more detail using summary statistics such as degree mean, 
median and variance, numbers of nodes and edges in SI Section S3.1. Moreover, 
additional summary statistics such as clustering coefficients are documented in [19, 
21]. 
 
2.3 Epidemiological quantities: threshold parameters, the probability of a major 
outbreak, and final size 
In general, the social distancing model is challenging to analyze mathematically (see 
[22] for analysis of the beginning of an epidemic on the configuration network). As 
the network structure depends on the epidemic dynamics, models very soon become 
intractable. Therefore, in the main text we present the heuristics of our analytical 
results and refer to SI for the mathematical details. In Section 3 the main focus is on 



our findings from simulation studies. Here, we present the key epidemiological 
concepts that are used in Section 3. 
 
For the beginning of the epidemic, in the configuration network model we use the 
basic reproduction number 𝑅<  that has the interpretation as the expected number of 
secondary cases generated by one typical newly infected individual at the beginning 
of the epidemic. The number 𝑅<  is a threshold parameter with threshold value one in 
the sense that, in the limit as the population size 𝑛 → ∞ there is a positive probability 
of a major outbreak (one which infects a strictly positive fraction of the population as 
𝑛 → ∞ if 𝑅< 	> 1 and no major outbreak occurs if 𝑅< ≤ 1. Owing to stochastic 
effects, it is always possible that an epidemic dies out when introduced into a 
population (with finite size 𝑛 even when 𝑅< > 1. Previous work ([22]; see SI Section 
S1.2) showed that the basic reproduction number 𝑅<	for the epidemic on the 
configuration network with social distancing is given by  

𝑅< = 	
𝛽

𝛽 + 𝜔 + 𝛾 >𝜇@ +
𝜎@B

𝜇@
− 1C	 (1) 

where 𝜇@  and 𝜎@B are the mean and variance of the degree distribution {𝑝5} of the 
configuration network; note that  𝜇@ +

DE
F

GE
− 1 is the expected number of susceptible 

connections of a typical newly infected individual in the early stages of an epidemic 
and 𝛽/(𝛽 + 𝜔 + 𝛾) is the probability of transmitting to such a susceptible individual 
before he/she recovers or the neighbour drops the connection or rewires away.  
 
Related to 𝑅<  is the clique reproduction number 𝑅∗ (also referred to as the household 
reproduction number when the cliques under consideration are households), which is 
more natural to consider when studying populations with a clique structure. Rather 
than considering a newly infected individual, one considers a newly infected clique as 
the unit of interest. The same threshold behaviour holds. The clique reproduction 
number 𝑅∗	is derived in Section 3.2 and SI Section S2.1. 
 
For an epidemic on both the configuration network and the clique network, as 
population size	𝑛 tends to infinity, the final fraction �̅�K of individuals that ever get 
infected converges in distribution to random variable �̅� with two-point distribution: 
𝑃(�̅� = 0) = 1 − 𝑃(�̅� = 𝑧). In the event of a major outbreak, the limiting final 
fraction of the population infected by the epidemic is 𝑧. In general, this constant 𝑧 is 
only characterized implicitly, even for the simplest Markovian homogeneously 
mixing SIR epidemic model. We use the practical definition in our simulation studies 
in Section 3 that an epidemic outbreak is major if the final number of infected 
individuals is more than 10% of the total population size. We use the fraction of 
simulations resulting in major outbreaks according to this definition as an 
approximation for the probability of a major outbreak to occur. Furthermore, we set 
the mean infectious period 1/𝛾 equal to 5 days as this lies in the typical range for 
many infectious diseases, such as rubella and polio. In our results presented below for 
the model networks, we investigate a range of 𝜔-values starting at zero and becoming 
large enough that the threshold parameter (𝑅< or 𝑅∗) is reduced below the critical 
value of one. For the real-world networks where the final size increases through social 
distancing, the range of 𝜔-values is chosen such that the decrease in the average final 
size for large enough 𝜔 can also be observed, whereas for the other real-world 
networks the range of 𝜔 is chosen so that comparison between different networks can 



be made. More details on the simulation studies are provided in SI Section S5. We call 
the model without social distancing (𝜔 = 0) the baseline model.  
 
 
3 Results 
 
3.1 The configuration network 
Social distancing in the configuration network is always beneficial at the beginning of 
an epidemic in the sense that it lowers 𝑅<. This conclusion follows immediately from 
expression (1). In fact, social distancing can ensure that 𝑅<  is reduced below the 
epidemic threshold value of one, see Fig. 1B for an example. At the beginning of an 
epidemic, from the point of view of a susceptible individual, social distancing from an 
infective neighbour ensures with high probability that he/she avoids infection during 
the early stages of an epidemic. Indeed, there are only few infectives in the population 
in that stage of the epidemic. This makes it unlikely for a susceptible individual to 
encounter another infectious individual at the beginning of the epidemic. 
 
However, social distancing need not be beneficial for the population as a whole. In 
fact, even though rewiring decreases 𝑅<, it can still lead to an increase in the final 
size. To show analytically that the expected final size can increase with 𝜔 we 
consider a very specific degree distribution, where individuals have either degree 0 or 
degree 𝑘, where 𝑘 > 2, i.e. 𝑝< = 1 − 𝑝P  (proving things for more general degree 
distributions seems very hard). We analyze a related model that allows us to derive an 
asymptotic lower bound for the model of interest with strictly positive rewiring 
probability 𝛼 > 0. In the related model, we consider an SI infection, i.e. set 𝛾 = 0. 
Then continuity arguments ensure that our results also hold for an SIR infection with 
𝛾 > 0	small enough. Individuals act differently depending on their degree. A 
susceptible individual that tries to rewire to a randomly chosen individual	𝑣 in the 
population will not do so (and simply drop the edge) if 𝑣 is of degree 𝑘. If 𝑣 is of 
degree 0, then rewiring takes place as usual, but 𝑣 is prohibited from transmitting to 
other individuals. Therefore, the number of infections in the modified model is always 
less than in the original model (and is equal in the baseline model when there is no 
social distancing). For this modified model, we can derive an asymptotic (as 𝑛 → ∞) 
lower bound for the final size that is increasing in 𝜔 for small 𝜔 > 0. It follows that, 
provided 𝛼 > 0, for sufficiently small 𝛾 > 0, the final size of the model with social 
distancing is greater than that without social distancing for sufficiently small 𝜔 > 0. 
The details of the analysis are found in SI Section S1.3. 
 
Rather than providing details for the analytical results for the final size here, we 
demonstrate the negative population level effects through simulation studies. We 
consider the social distancing model on a configuration network with heterogeneous 
degree distribution in Fig. 1. Parameter values are such that the basic reproduction 
number 𝑅< is large in the baseline setting and the majority of the social distancing is 
done through rewiring rather than dropping. The epidemic is started with 10 index 
cases (chosen uniformly at random from the population) in order to have most of the 
simulations resulting in major outbreaks. The number of index cases, unless 
sufficiently large, does not affect the final size of a major outbreak. We illustrate this 
fact by considering the scenario with one index case in SI Fig S1. Then the final size 
given a major outbreak increases as a function of social distancing as in Fig. 1, but the 



fraction of simulations resulting in a major outbreak is much smaller and 
consequently the average final size is decreasing. Additional results showing that 
social distancing can increase the final size for several other configuration network 
models are presented in SI Section S4. In particular, we consider different settings 
with a smaller rewiring probability 𝛼 > 0. 
 
Note that the fraction of epidemics that result in major outbreaks decreases with 
increasing social distancing rates (Fig. 1B). Despite this, the average final size of all 
outbreaks can still increase. Once the social distancing rate 𝜔 increases to a level such 
that the basic reproduction number drops below the epidemic threshold value of one 
(Fig. 1B), mostly minor outbreaks will occur. Finally, we note that deviations from 
the average final size are generally small (also compared to the total population size 
of 5000), especially when conditioning on the occurrence of a major outbreak.  
 

 
Figure 1: Social distancing can lead to an increase in the final size for the 
configuration network model. (A) Average final size (with 95% confidence intervals 
(CI) whenever large enough to be visible on the scales used in the plots) over all 
outbreaks (solid line) and restricted to major outbreaks (dashed line); the dotted 
horizontal line is at the final size when 𝜔 = 0, for reference. (B) 𝑅< as a function of 
social distancing rate 𝜔 (dashed black line at 𝑅< = 1 indicates the threshold value) 
and fraction of all outbreaks resulting in major outbreaks (with 95% CI). Model 
parameters are as follows. An individual in the population has degree 𝑑 with 𝑑 =
0,⋯ ,10 with probability 𝑝5 = 𝑐/(𝑑 + 1), 𝑑 = 0,⋯ ,10 with 𝑐 = 0.331 the 
normalization constant. Other parameter values are 𝛼 = 0.9, 𝛽 = 20/day and 1/𝛾 =
5 days, total population size 5000, and each epidemic starts with 10 randomly chosen 
index cases. For each value of 𝜔, 500 epidemics are simulated. 
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3.2 The clique network 
In the clique network individual preventive social distancing can have a negative 
population-level effect already at the beginning of an epidemic. To demonstrate this 
we consider 𝑅∗ for the clique-network model. The clique reproduction number 𝑅∗ is 
derived by differentiating between two types of newly infected cliques. A newly 
infected clique at first consists of one newly infected individual while the remaining 
clique members are susceptible. The two types are determined by the way the newly 
infected individual 𝑢∗ was infected: (1) 𝑢∗	was infected by a global neighbour (i.e. 
outside his/her own clique) that it had already before the start of the epidemic or (2) 
𝑢∗ was infected by a global neighbour that it acquired through a social distancing 
event during the epidemic. The clique reproduction number is the dominant 
eigenvalue of the 2 × 2 matrix (𝐾Z[)Z,[\],B, where 𝐾Z[ is the expected number of 
cliques of type 𝑗 generated by one newly infected clique of type 𝑖. Details of the 
derivation of the 𝐾Z[	are found in SI Section S2.1. We find an explicit expression for 
𝑅∗	that we can analyse as a function of social distancing 𝜔 and rewiring probability 𝛼 
for different degree distributions (see SI Section S2.2). We illustrate these analytical 
results with numerical examples in Fig. 2 for fixed rewiring probability 𝛼 = 0.9 (but 
note that there is generally a range for 𝛼 for which negative population-level effects 
can occur, depending on the network under consideration and other model parameter 
values, see SI Section S4). 
 
As can be seen in Fig. 2A, 𝑅∗ can increase as a function of the social distancing rate 
𝜔. In particular, social distancing can move the epidemic threshold 𝑅∗ from below to 
above its threshold value of one. In other words, individual preventive measures that 
are beneficial at the individual level can cause a major outbreak to become possible 
while without the preventive measures this is not possible. However, this depends 
heavily on the precise network structure. In Fig. 2B, the degree distribution is chosen 
such that 𝑅∗ decreases for all social distancing rates. See SI Section S2 for more 
details and examples of the dependence of 𝑅∗ on social distancing. Note that 𝑅∗	will 
eventually decrease for large enough social distancing rates as can be seen in Fig. 2A. 
 
In settings where social distancing pushes 𝑅∗ from below to above the threshold for 
an epidemic to occur, the effect of social distancing on the final size is large (Fig. 2C). 
Moreover, even in settings where social distancing reduces 𝑅∗, the final size can 
initially increase when social distancing is introduced into the model (Fig. 2D). 
 



 
Figure 2: The effect of social distancing on the epidemic threshold parameter 𝑅∗	and 
the final size. The fraction of epidemics resulting in major outbreaks (with 95% CI 
whenever large enough to be visible on the scales used in the plots) and 𝑅∗ for (A) 
mean infectious period 1/𝛾 = 5 days, 𝛽 = 20/day and two-point degree distribution 
with 𝑝< =

]
B
= 𝑝] and (B) mean infectious period 1/𝛾 = 5 days, 𝛽 = 2/day and two-

point degree distribution with 𝑝< =
]
B
= 𝑝`.	Average final size with (dashed) and 

without (solid) conditioning on a major outbreak (with 95% CI) corresponding to (C) 
scenario A (D) scenario B; dotted horizontal lines are for comparison with the size at 
𝜔 = 0. Other parameter values are as follows: cliques have size 3, the population size 
is 5000 and 𝛼 = 0.9. Each epidemic is initiated with one randomly chosen infected 
individual and for each value of 𝜔, 500 epidemics are simulated. 
 
3.3 Application to real-world networks 
We consider four real-world networks: the arXiv General Relativity collaboration 
network and Facebook social circles network, taken from [19], and two Science 
Gallery networks that we call SG1 and SG2, taken from [20,21]. We simulate SIR 
epidemics with social distancing on these real-world networks (see SI Section S3.1 for 
details). In Fig. 3 and 4 we demonstrate that social distancing can have a negative 
effect at the population level by increasing the final size in the collaboration network 
and the SG1 network.  
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Figure 3: Social distancing in the arXiv General Relativity collaboration network. (A) 
The average final size with (dashed) and without (solid) conditioning on a major 
outbreak (with 95% CI whenever large enough to be visible on the scales used in the 
plots); dotted horizontal lines are for the size of the giant component (top) and 
comparison with the size at 𝜔=0 (bottom two). (B) Fraction of all outbreaks that 
resulted in major outbreaks (with 95%). Model parameter values are: mean infectious 
period 1/𝛾 = 5 days, 𝛽 = 2/day and 𝛼 = 0.9. For each value of 𝜔, 500 epidemics are 
simulated. The index case is chosen uniformly at random from the sub-population of 
individuals that has median degree and are part of the largest connected component of 
the network. 
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Figure 4: Social distancing in the SG1. (A) The average final size over all outbreaks 
(solid) and conditioning on major outbreaks (dashed) (with 95% CI whenever large 
enough to be visible on the scales used in the plots); dotted horizontal lines are for the 
size of the network (top) and comparison with the size at 𝜔=0 (bottom two). (B) 
Fraction of all outbreaks that resulted in major outbreaks (with 95% CI). Model 
parameter values are: mean infectious period 1/𝛾 = 5 days, 𝛽 = 0.1/day and 𝛼 =
0.9. For each value of 𝜔, 500 epidemics are simulated. The index case is randomly 
chosen from the population that has median degree. 
 
Next, we consider the Facebook social circles network and the SG2 network in Figs. 5 
and 6. These two networks serve to demonstrate that the precise network structure 
plays a crucial role for the effect that social distancing can have on the final size. For 
the Facebook social circles in Fig. 5, we find that if we restrict to only the major 
outbreaks, then a modest increase in the final size can be observed when compared to 
the baseline setting. On the other hand, the average final size is more or less 
unaffected by social distancing for sufficiently small social distancing rates. This can 
be explained by the network structure of the underlying population. Since all 
individuals are part of the same connected component that contains many 
connections, i.e. all individuals are (indirectly) connected to each other, modest social 
distancing rates will not change the network structure in a way that significantly alters 
transmission patterns. Further, for the SG2 network in Fig. 6, we find a slight increase 
in the final size for small social distancing rates but in general social distancing 
decreases the average final size compared to the baseline setting. Although also this 
network consists of one connected component, the relative number of connections is 
much smaller when compared to the Facebook social circles network (see SI Section 
S3.1 for network summary statistics). 
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Figure 5: Social distancing in the facebook social circles network. (A) The average 
final size over all outbreaks (solid) and conditioning on major outbreaks (dashed) 
(with 95% CI whenever large enough to be visible on the scales used in the plots); 
dotted horizontal lines are for the size of the network (top) and comparison with the 
size at 𝜔=0 (bottom two). (B) Fraction of all outbreaks that resulted in major 
outbreaks (with 95% CI). Model parameter values are: mean infectious period 1/𝛾 =
5 days, 𝛽 = 2/day and 𝛼 = 0.9. For each value of 𝜔, 500 epidemics are simulated. 
The index case is randomly chosen from the population that has median degree. 
 

 
Figure 6: Social distancing in the SG2 network with randomly chosen index case 
with median degree. (A) The average final size over all outbreaks (solid) and 
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conditioning on major outbreaks (dashed) (with 95% CI whenever large enough to be 
visible on the scales used in the plots); dotted horizontal lines are for the size of the 
network (top) and comparison with the size at 𝜔=0 (bottom two). (B) Fraction of all 
outbreaks that resulted in major outbreaks (with 95% CI). Model parameter values 
are: mean infectious period 1/𝛾 = 5 days, 𝛽 = 0.1/day and 𝛼 = 0.9. For each value 
of 𝜔, 500 epidemics are simulated. The index case is randomly chosen from the 
population that has median degree. 
 
In SI Section 4 additional scenarios for smaller probabilities 𝛼 for the real-world 
networks are considered. We find that negative population-level effects can occur for 
arXiv General Relativity collaboration network and SG1 for a wider range of 𝛼-
values while 𝛼 has minor effects on the final size on the Facebook social circles 
network, and decreasing 𝛼 leads to smaller final sizes on the SG2 network. 
 
 
4. Conclusion and discussion 
 
In the event of an epidemic outbreak in a population, individuals may take preventive 
measures by changing their contact patterns. Individuals may try to avoid infection by 
social distancing from infectious contacts. If this is done at sufficiently high social 
distancing rate, then this can have a positive population level effect by bringing the 
reproduction number for an epidemic to take off below the threshold value of one. On 
the other hand, while preventive social distancing at moderate rates is always rational 
at the individual level, it may be harmful at the population level. In particular, 
preventive social distancing can increase the final epidemic size at the population 
level and thus have negative effects for the community at large. We demonstrated this 
counter-intuitive result by means of different epidemic network models, as well as 
simulating epidemics with social distancing on existing real-world networks. Similar 
conclusions in terms of behavioural changes at the individual level and its population-
level consequences have been drawn in [23,24] for different behavioural change 
models. Both [23,24] considered changes in human mobility patterns in the event of 
an epidemic and its consequences for the geographical spread. Using a 
metapopulation model, they illustrated that individual preventive measures in 
mobility patterns can lead to epidemic spread in new locations, although their 
invasion thresholds are always increasing [23] or even independent [24] of the 
behavioural changes, which is quite different from the dependence on social 
distancing of the threshold parameters 𝑅< and 𝑅∗ in our models.  
 
Whether or not social distancing of susceptible individuals from their infectious 
contacts will actually have negative epidemic outcomes depends strongly on the 
social network structure of the population. We demonstrated that social distancing can 
have different effects in the initial stages of the epidemic compared to the overall 
epidemic outbreak size. We considered the spread of an SIR epidemic on the clique-
network model and the configuration network model. We showed that social 
distancing can have negative effects for the community by (i) increasing the epidemic 
threshold parameter 𝑅∗ from below to above the threshold value of one in clique-
networks with high clustering and (ii) by increasing the final size. Point (ii) for the 
final size was shown in (a) configuration networks with heterogeneous degree 
distribution, (b) clique-networks, and (c) two real-world networks.  



 
In general, in the baseline setting that an epidemic outbreak may occur when no 
preventive measures are taken, social distancing can always have beneficial effects 
provided that the rate of social distancing is sufficiently large (e.g. Fig. 3A). Indeed, 
sufficiently large social distancing rates can prevent an epidemic from taking off by 
reducing the epidemic threshold parameter from above to below its threshold value. In 
such cases, social distancing ensures that only a small number of individuals get 
infected by the epidemic, while in the baseline setting a significant fraction of the 
population may be infected.  
 
Whereas social distancing never increases ones own risk of getting infected in our 
model, through rewiring, it can increase the risk for other individuals, e.g. by 
connecting to individuals that were previously not (so heavily) exposed to the 
epidemic. How and whether or not social distancing affects the population-level 
epidemic outcome depend on a variety of factors. Most notably, the network structure 
plays an important role (e.g. Fig. 2). While it was not our aim to investigate models 
for specific diseases, we have chosen parameter values (e.g. 1/𝛾 = 5 days and 𝑅< = 
4.5 in the baseline model for Fig. 1) which are relevant for many infectious diseases. 
For example mumps, rubella, and polio have estimated basic reproduction numbers 
around 5 and infectious periods are typically in the range of a few days to weeks.  
Note that we consider an infectious period that is exponentially distributed. The 
memoryless property of the exponential distribution ensures that social distancing is 
always beneficial at the individual level. Relaxing this assumption could potentially 
lead to different effects for the individual and/or the population level. This is an 
interesting extension to investigate in future work for which the current framework 
provides an excellent starting point. Furthermore, social distancing with larger values 
of 𝛼 can more easily lead to negative effects at the population level. Exactly what 
constitutes sufficiently large 𝛼 to realise this effect depends on the precise setting that 
one considers (e.g. for the clique network model with a Poisson degree distribution 
having mean 1 this occurs with 𝑅∗	for all ]

B
< 𝛼 ≤ 1, while for the same model with 

degree distribution 𝑝< =
]
B
= 𝑝] the range of 𝛼 is larger at  ]

`
< 𝛼 ≤ 1; see also SI 

Section S1.3, S2.2 and S4) . These negative population-level effects also seem to arise 
more easily when the threshold parameter (𝑅< or 𝑅∗)	is high and the community has 
many individuals with low degrees and/or the community has highly connected 
cliques. In such cases, rewiring may introduce or increase connections to otherwise 
relatively isolated individuals. In this way the smaller chance of the individual who 
takes preventive measures getting infected is outweighed by the increased risk of 
transmission to a larger part of the population in the event of infection. 
 
The main point of the paper is to show, mathematically in the supplementary material 
and by means of simulations in the main text, that social distancing may for some 
networks actually increase the total number of infected at the end of the outbreak. 
Social distancing could also affect other features of an outbreak, such as the size and 
time of the peak and the duration of the outbreak. To show any mathematical results 
for such finer details of the outbreak appears to be very hard but can of course be 
addressed by means of simulations. A thorough study, preferably accompanied by 
some mathematical results, remains to be done. 
 



Although it is generally recognised that individual preventive measures are often 
taken once awareness of an epidemic is in place, it is not well understood how to 
model changes in individual behaviour. Here we considered the effect of social 
distancing on an epidemic. We modelled this on a contact network by assuming that 
susceptible individuals distance themselves from infectious contacts, allowing for 
both dropping of connections and replacement with new contacts in the desire to 
sustain a certain number of social contacts. Social behaviour is far more complex than 
our social distancing model, and many behavioural changes will depend on the 
epidemic and population under consideration. For example, an important factor is risk 
perception. In the case of severe diseases, one can imagine that susceptible 
individuals will more likely drop connections rather than rewire them to other 
individuals in the population. There might be heterogeneity in preventive measures 
taken; some individuals might be willing to take more risks than others or have a 
stronger inclination to maintain a certain number of connections, e.g. for sexually 
transmitted infections (STIs) one can often distinguish between groups with 
distinctively different levels of sexual activity. How such structures influence 
epidemic outcomes is likely to depend strongly on assumptions made on e.g. mixing 
between risk groups (how assortative mixing is and whether individuals have the 
same assortative behaviour when rewiring to other individuals).  
 
In terms of different types of connections, another interesting extension is to 
distinguish between behavioural changes within and between cliques. If cliques 
represent e.g. households then one can imagine that susceptible individuals may drop 
connections to infectious individuals outside the household and intensify connections 
within the household instead. While the current study focuses on preventive 
behavioural changes of susceptible individuals, one could also consider behavioural 
changes of infectious individuals, e.g. isolation, either self imposed or implemented 
by public health authorities. Such measures regarding infectious individuals would 
generally not have the negative population effects as seen with social distancing of 
susceptible individuals, though see [25] which shows that replacing individuals with 
essential societal roles, such as health workers, when they are detected as being 
infectious, by susceptible individuals can accelerate disease transmission.  
 
Note that we assume that the network structure of the population is static in the 
absence of disease. Depending on the disease of interest it would be interesting to 
consider a network that is dynamic also in the absence of infection, as would be 
appropriate for STIs such as HIV to incorporate partner separation and formation over 
time. Superimposed on the dynamic network are then the dynamics that follow from 
social distancing (or other preventive measures). These are just a few important ways 
to modify and extend the social distancing model that we consider. As we find 
counterintuitive results already in the current model with relatively simple social 
distancing rules, it is difficult to understand how such extensions impact the epidemic, 
and certainly it would be interesting to investigate that in future work. Such 
extensions could then help to gain insights into real-world transmission dynamics in 
specific populations that might display some form of preventive measures that is in 
line with the simple social distancing model of this study. In order to relate preventive 
measures to real-world epidemics one would preferably be guided by disease-specific 
network- and behavioural data (see e.g. [10] for references to studies considering 
behavioural changes during the course of an epidemic for specific diseases and 
populations).  



 
However, the aim of our paper is to show, in a theoretical context, that rational 
individual-level preventive measures can have counter-intuitive consequences for the 
population-level. Public health interventions that aim at changing individual 
behaviour through social distancing could have adverse consequences, for example 
school closures could reduce social contacts between children in the school classes 
but may (partly) be replaced by social contacts outside of school. But similarly, these 
measures could be beneficial for the population. As our results show, it is not 
necessarily straightforward what effects such behaviour may have at the population 
level, where much may depend on the disease and population under consideration. 
These findings highlight the importance of understanding the properties of disease-
specific contact networks and modelling individual level behavioural changes in 
response to an epidemic to understand infectious disease dynamics.  
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