329 research outputs found
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
By stacking various two-dimensional (2D) atomic crystals [1] on top of each
other, it is possible to create multilayer heterostructures and devices with
designed electronic properties [2-5]. However, various adsorbates become
trapped between layers during their assembly, and this not only affects the
resulting quality but also prevents the formation of a true artificial layered
crystal upheld by van der Waals interaction, creating instead a laminate glued
together by contamination. Transmission electron microscopy (TEM) has shown
that graphene and boron nitride monolayers, the two best characterized 2D
crystals, are densely covered with hydrocarbons (even after thermal annealing
in high vacuum) and exhibit only small clean patches suitable for atomic
resolution imaging [6-10]. This observation seems detrimental for any realistic
prospect of creating van der Waals materials and heterostructures with
atomically sharp interfaces. Here we employ cross sectional TEM to take a side
view of several graphene-boron nitride heterostructures. We find that the
trapped hydrocarbons segregate into isolated pockets, leaving the interfaces
atomically clean. Moreover, we observe a clear correlation between interface
roughness and the electronic quality of encapsulated graphene. This work proves
the concept of heterostructures assembled with atomic layer precision and
provides their first TEM images
Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy
We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate
Strain-engineered graphene grown on hexagonal boron nitride by molecular beam epitaxy
Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene
Probing the Nature of Defects in Graphene by Raman Spectroscopy
Raman Spectroscopy is able to probe disorder in graphene through
defect-activated peaks. It is of great interest to link these features to the
nature of disorder. Here we present a detailed analysis of the Raman spectra of
graphene containing different type of defects. We found that the intensity
ratio of the D and D' peak is maximum (~ 13) for sp3-defects, it decreases for
vacancy-like defects (~ 7) and reaches a minimum for boundaries in graphite
(~3.5).Comment: 14 pages, 4 figure
Electron transfer kinetics on natural crystals of MoS2Â and graphite
Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)63−/4−, Ru(NH3)63+/2+ and IrCl62−/3− are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications
Micrometer-scale ballistic transport in encapsulated graphene at room temperature
Devices made from graphene encapsulated in hexagonal boron-nitride exhibit
pronounced negative bend resistance and an anomalous Hall effect, which are a
direct consequence of room-temperature ballistic transport on a micrometer
scale for a wide range of carrier concentrations. The encapsulation makes
graphene practically insusceptible to the ambient atmosphere and,
simultaneously, allows the use of boron nitride as an ultrathin top gate
dielectric
Strong light-matter coupling in two-dimensional atomic crystals
Two dimensional (2D) atomic crystals of graphene, and transition metal
dichalcogenides have emerged as a class of materials that show strong
light-matter interaction. This interaction can be further controlled by
embedding such materials into optical microcavities. When the interaction is
engineered to be stronger than the dissipation of light and matter entities,
one approaches the strong coupling regime resulting in the formation of
half-light half-matter bosonic quasiparticles called microcavity polaritons.
Here we report the evidence of strong light-matter coupling and formation of
microcavity polaritons in a two dimensional atomic crystal of molybdenum
disulphide (MoS2) embedded inside a dielectric microcavity at room temperature.
A Rabi splitting of 46 meV and highly directional emission is observed from the
MoS2 microcavity owing to the coupling between the 2D excitons and the cavity
photons. Realizing strong coupling effects at room temperature in a disorder
free potential landscape is central to the development of practical polaritonic
circuits and switches.Comment: 25 pages, 7 figure
Van der Waals heterostructures
Research on graphene and other two-dimensional atomic crystals is intense and
likely to remain one of the hottest topics in condensed matter physics and
materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by
layer in a precisely chosen sequence. The first - already remarkably complex -
such heterostructures (referred to as 'van der Waals') have recently been
fabricated and investigated revealing unusual properties and new phenomena.
Here we review this emerging research area and attempt to identify future
directions. With steady improvement in fabrication techniques, van der Waals
heterostructures promise a new gold rush, rather than a graphene aftershock
Graphene Transistor as a Probe for Streaming Potential
We explore the dependence of electrical transport in a graphene field effect
transistor (GraFET) on the flow of the liquid within the immediate vicinity of
that transistor. We find large and reproducible shifts in the charge neutrality
point of GraFETs that are dependent on the fluid velocity and the ionic
concentration. We show that these shifts are consistent with the variation of
the local electrochemical potential of the liquid next to graphene that are
caused by the fluid flow (streaming potential). Furthermore, we utilize the
sensitivity of electrical transport in GraFETs to the parameters of the fluid
flow to demonstrate graphene-based mass flow and ionic concentration sensing.
We successfully detect a flow as small as~70nL/min, and detect a change in the
ionic concentration as small as ~40nM.Comment: 6 pages, 4 figure
- …