25 research outputs found

    Data for proteomic analysis of murine cardiomyocytic HL1 cells treated with siRNA against tissue factor

    Get PDF
    YesThis data article is related to the research article entitled Proteomics of Tissue Factor silencing in cardiomyocytic cells reveals a new role for this coagulation factor in splicing machinery control by Lento et al [1]. Tissue Factor (TF) is the key player in the coagulation cascade, but it has additional functions ranging from angiogenesis, tumor invasion and, in the heart, the maintenance of the integrity of cardiac cells. This article reports the nano-LC-MSE analysis of the cardiomyocytic HL-1 cell line proteome and describes the results obtained from a Gene Ontology analysis of those proteins affected by TF-gene silencing

    Proteomics of tissue factor silencing in cardiomyocytic cells reveals a new role for this coagulation factor in splicing machinery control

    Get PDF
    YesIt has long been known that Tissue Factor (TF) plays a role in blood coagulation and has a direct thrombotic action that is closely related to cardiovascular risk, but it is becoming increasingly clear that it has a much wider range of biological functions that range from inflammation to immunity. It is also involved in maintaining heart haemostasis and structure, and the observation that it is down-regulated in the myocardium of patients with dilated cardiomyopathy suggests that it influences cell-to-cell contact stability and contractility, and thus contributes to cardiac dysfunction. However, the molecular mechanisms underlying these coagulation-independent functions have not yet been fully elucidated. In order to analyse the influence of TF on the cardiomyocitic proteome, we used functional biochemical approaches incorporating label-free quantitative proteomics and gene silencing, and found that this provided a powerful means of identifying a new role for TF in regulating splicing machinery together with the expression of several proteins of the spliceosome, and mRNA metabolism with a considerable impact on cell viability

    A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The commonest pathogenic <it>DMD </it>changes are intragenic deletions/duplications which make up to 78% of all cases and point mutations (roughly 20%) detectable through direct sequencing. The remaining mutations (about 2%) are thought to be pure intronic rearrangements/mutations or 5'-3' UTR changes. In order to screen the huge <it>DMD </it>gene for all types of copy number variation mutations we designed a novel custom high density comparative genomic hybridisation array which contains the full genomic region of the <it>DMD </it>gene and spans from 100 kb upstream to 100 kb downstream of the 2.2 Mb <it>DMD </it>gene.</p> <p>Results</p> <p>We studied 12 DMD/BMD patients who either had no detectable mutations or carried previously identified quantitative pathogenic changes in the <it>DMD </it>gene. We validated the array on patients with previously known mutations as well as unaffected controls, we identified three novel pure intronic rearrangements and we defined all the mutation breakpoints both in the introns and in the 3' UTR region. We also detected a novel polymorphic intron 2 deletion/duplication variation. Despite the high resolution of this approach, RNA studies were required to confirm the functional significance of the intronic mutations identified by CGH. In addition, RNA analysis identified three intronic pathogenic variations affecting splicing which had not been detected by the CGH analysis.</p> <p>Conclusion</p> <p>This novel technology represents an effective high throughput tool to identify both common and rarer DMD rearrangements. RNA studies are required in order to validate the significance of the CGH array findings. The combination of these tools will fully cover the identification of causative DMD rearrangements in both coding and non-coding regions, particularly in patients in whom standard although extensive techniques are unable to detect a mutation.</p

    Traditional Cultures versus Next Generation Sequencing for Suspected Orthopedic Infection: Experience Gained from a Reference Centre

    No full text
    (Background) The diagnosis and the antimicrobial treatment of orthopedic infection are challenging, especially in cases with culture-negative results. New molecular methods, such as next-generation sequencing (NGS), promise to overcome some limitations of the standard culture, such as the detection of difficult-to-grow bacteria. However, data are scarce regarding the impact of molecular techniques in real-life scenarios. (Methods) We included cases of suspected orthopedic infection treated with surgery from May 2021 to September 2023. We combined traditional cultures with NGS. For NGS, we performed a metagenomic analysis of ribosomal 16s, and we queried dedicated taxonomic libraries to identify the species. To avoid false positive results, we set a cut-off of 1000 counts of the percentage of frequency of reads. (Results) We included 49 patients in our study. Our results show the presence of bacteria in 36/49 (73%) and 29/49 (59%) cases studied with NGS and traditional cultures, respectively. The concordance rate was 61%. Among the 19/49 discordant cases, in 11/19 cases, cultures were negative and NGS positive; in 4/19, cultures were positive and NGS negative; and in the remaining 4/19, different species were detected by traditional cultures and NGS. (Conclusions) Difficult-to-grow microorganisms, such as slow-growing anaerobic bacteria, were better detected by NGS compared to traditional culture in our study. However, more data to distinguish between true pathogens and contaminants are needed. NGS can be an additional tool to be used for the diagnosis of orthopedic infections and the choice of appropriate antimicrobial therapy

    The DMD Locus Harbours Multiple Long Non-Coding RNAs Which Orchestrate and Control Transcription of Muscle Dystrophin mRNA Isoforms

    Get PDF
    <div><p>The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.</p> </div
    corecore