15 research outputs found

    Charge Symmetry Violation Effects in Pion Scattering off the Deuteron

    Full text link
    We discuss the theoretical and experimental situations for charge symmetry violation (CSV) effects in the elastic scattering of pi+ and pi- on deuterium (D) and 3He/3H. Accurate comparison of data for both types of targets provides evidence for the presence of CSV effects. While there are indications of a CSV effect in deuterium, it is much more pronounced in the case of 3He/3H. We provide a description of the CSV effect on the deuteron in terms of single- and double- scattering amplitudes. The Delta-mass splitting is taken into account. Theoretical predictions are compared with existing experimental data for pi-d scattering; a future article will speak to the pi-three nucleon case.Comment: 16 pages of RevTeX, 7 postscript figure

    The CARMENES search for exoplanets around M dwarfs High-resolution optical and near-infrared spectroscopy of 324 survey stars

    Get PDF
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1

    The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden’s Star

    Get PDF
    Context.Teegarden’s Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V),the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES.Aims.As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden’sStar and analysed them for planetary signals.Methods.We find periodic variability in the radial velocities of Teegarden’s Star. We also studied photometric measurements to rule out stellarbrightness variations mimicking planetary signals.Results.We find evidence for two planet candidates, each with 1.1M⊕minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. Noevidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotationand old age.Conclusions.The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cooldwarf for which the masses have been determined using radial velocities.We thank the referee Rodrigo Díaz for a careful review andhelpful comments. M.Z. acknowledges support from the Deutsche Forschungs-gemeinschaft under DFG RE 1664/12-1 and Research Unit FOR2544 “BluePlanets around Red Stars”, project no. RE 1664/14-1. CARMENES isan instrument for the Centro Astronómico Hispano-Alemán de Calar Alto(CAHA, Almería, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de InvestigacionesCientíficas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, LandessternwarteKönigstuhl, Institut de Ciències de l’Espai, Institut für Astrophysik Göttingen,Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg,Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astro-biología and Centro Astronómico Hispano-Alemán), with additional contribu-tions by the Spanish Ministry of Economy, the German Science Foundationthrough the Major Research Instrumentation Programme and DFG ResearchUnit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, thestates of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía.Based on data from the CARMENES data archive at CAB (INTA-CSIC). Thisarticle is based on observations made with the MuSCAT2 instrument, devel-oped by ABC, at Telescopio Carlos Sánchez operated on the island of Tener-ife by the IAC in the Spanish Observatorio del Teide. Data were partly col-lected with the 150-cm and 90-cm telescopes at the Sierra Nevada Observa-tory (SNO) operated by the Instituto de Astrofísica de Andalucía (IAA-CSIC).Data were partly obtained with the MONET/South telescope of the MOnitoringNEtwork of Telescopes, funded by the Alfried Krupp von Bohlen und HalbachFoundation, Essen, and operated by the Georg-August-Universität Göttingen,the McDonald Observatory of the University of Texas at Austin, and the SouthAfrican Astronomical Observatory. We acknowledge financial support from theSpanish Agencia Estatal de Investigación of the Ministerio de Ciencia, Inno-vación y Universidades and the European FEDER/ERF funds through projectsAYA2015-69350-C3-2-P, AYA2016-79425-C3-1/2/3-P, AYA2018-84089, BES-2017-080769, BES-2017-082610, ESP2015-65712-C5-5-R, ESP2016-80435-C2-1/2-R, ESP2017-87143-R, ESP2017-87676-2-2, ESP2017-87676-C5-1/2/5-R, FPU15/01476, RYC-2012-09913, the Centre of Excellence ”Severo Ochoa”and ”María de Maeztu” awards to the Instituto de Astrofísica de Canarias (SEV-2015-0548), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Cen-tro de Astrobiología (MDM-2017-0737), the Generalitat de Catalunya throughCERCA programme”, the Deutsches Zentrum für Luft- und Raumfahrt throughgrants 50OW0204 and 50OO1501, the European Research Council through grant694513, the Italian Ministero dell’instruzione, dell’università de della ricerca andUniversità degli Studi di Roma Tor Vergata through FFABR 2017 and “Mis-sion: Sustainability 2016”, the UK Science and Technology Facilities Council through grant ST/P000592/1, the Israel Science Foundation through grant848/16, the Chilean CONICYT-FONDECYT through grant 3180405, the Mexi-can CONACYT through grant CVU 448248, the JSPS KAKENHI through grantsJP18H01265 and 18H05439, and the JST PRESTO through grant JPMJPR1775

    The CARMENES search for exoplanets around M dwarfs HD147379 b: A nearby Neptune in the temperate zone of an early-M dwarf

    Get PDF
    We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s−1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star.FEDER/ERF FICTS-2011-02 fundsMajor Research Instrumentation Programme and DFG Research Unit FOR2544 “Blue Planets around Red StarsEuropean Research Council (ERC-279347), Deutsche Forschungsgemeinschaft (RE 1664/12-1, RE 2694/4-1), Bundesministerium für Bildung und Forschung (BMBF-05A14MG3, BMBF-05A17MG3), Spanish Ministry of Economy and Competitiveness (MINECO, grants AYA2015-68012-C2-2-P, AYA2016-79425-C3-1,2,3-P, AYA2015-69350-C3-2-P, AYA2014-54348-C03- 01, AYA2014-56359-P, AYA2014-54348-C3-2-R, AYA2016-79425-C3-3-P and 2013 Ramòn y Cajal program RYC-2013-14875), Fondo Europeo de Desarrollo Regional (FEDER, grant ESP2016-80435-C2-1-R, ESP2015-65712-C5- 5-R), Generalitat de Catalunya/CERCA programme, Spanish Ministerio de Educación, Cultura y Deporte, programa de Formación de Profesorado Universitario (grant FPU15/01476), Deutsches Zentrum für Luft- und Raumfahrt (grants 50OW0204 and 50OO1501), Office of Naval Research Global (award no. N62909-15-1-2011), Mexican CONACyT grant CB-2012-183007

    The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    Get PDF
    Stars and planetary system

    He I λ 10 830 Å in the transmission spectrum of HD209458 b

    Get PDF
    Context. Recently, the He I triplet at 10 830 Å was rediscovered as an excellent probe of the extended and possibly evaporating atmospheres of close-in transiting planets. This has already resulted in detections of this triplet in the atmospheres of a handful of planets, both from space and from the ground. However, while a strong signal is expected for the hot Jupiter HD 209458 b, only upper limits have been obtained so far. Aims: Our goal is to measure the helium excess absorption from HD 209458 b and assess the extended atmosphere of the planet and possible evaporation. Methods: We obtained new high-resolution spectral transit time-series of HD 209458 b using CARMENES at the 3.5 m Calar Alto telescope, targeting the He I triplet at 10 830 Å at a spectral resolving power of 80 400. The observed spectra were corrected for stellar absorption lines using out-of-transit data, for telluric absorption using the MOLECFIT software, and for the sky emission lines using simultaneous sky measurements through a second fibre. Results: We detect He I absorption at a level of 0.91 ± 0.10% (9 σ) at mid-transit. The absorption follows the radial velocity change of the planet during transit, unambiguously identifying the planet as the source of the absorption. The core of the absorption exhibits a net blueshift of 1.8 ± 1.3 km s-1. Possible low-level excess absorption is seen further blueward from the main absorption near the centre of the transit, which could be caused by an extended tail. However, this needs to be confirmed. Conclusions: Our results further support a close relation between the strength of planetary absorption in the helium triplet lines and the level of ionising, stellar X-ray, and extreme-UV irradiation

    He I lambda 10 830 angstrom in the transmission spectrum of HD 209458 b

    No full text
    Recently, the He I triplet at 10 830 Å was rediscovered as an excellent probe of the extended and possibly evaporating atmospheres of close-in transiting planets. This has already resulted in detections of this triplet in the atmospheres of a handful of planets, both from space and from the ground. However, while a strong signal is expected for the hot Jupiter HD 209458 b, only upper limits have been obtained so far. Aims: Our goal is to measure the helium excess absorption from HD 209458 b and assess the extended atmosphere of the planet and possible evaporation. Methods: We obtained new high-resolution spectral transit time-series of HD 209458 b using CARMENES at the 3.5 m Calar Alto telescope, targeting the He I triplet at 10 830 Å at a spectral resolving power of 80 400. The observed spectra were corrected for stellar absorption lines using out-of-transit data, for telluric absorption using the MOLECFIT software, and for the sky emission lines using simultaneous sky measurements through a second fibre. Results: We detect He I absorption at a level of 0.91 ± 0.10% (9 ¿) at mid-transit. The absorption follows the radial velocity change of the planet during transit, unambiguously identifying the planet as the source of the absorption. The core of the absorption exhibits a net blueshift of 1.8 ± 1.3 km s-1. Possible low-level excess absorption is seen further blueward from the main absorption near the centre of the transit, which could be caused by an extended tail. However, this needs to be confirmed. Conclusions: Our results further support a close relation between the strength of planetary absorption in the helium triplet lines and the level of ionising, stellar X-ray, and extreme-UV irradiation.© ESO 2019We thank P. Molliere and A. Wyttenbach for the nice scientific discussions during the preparation of this publication. F.J.A.-F. and I.S. acknowledge funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme under grant agreement No 694 513. CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (MaxPlanck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Institut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 >Blue Planets around Red Stars>, the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. Financial support was also provided by the Universidad Complutense de Madrid, the Comunidad Autonoma de Madrid, the Spanish Ministerios de Ciencia e Innovacion and of Economia y Competitividad, the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> and Science & Technology Facility Council Consolidated, and the Fondo Social Europeo. The corresponding funding grants are: ESP2014-54 362-P, ESP2014-54 062-R, AYA2015-69 350-C3-2-P, BES-2015-074542, AYA2016-79 425-C3-1/2/3-P, ESP2016-76 076-R, ESP2017-87 143-R, SEV-2017-0709, ST/P000592/1. Based on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut fur Astronomie and the Instituto de Astrofisica de Andalucia. We thank the anonymous referee for their insightful comments, which contributed to improve the quality of the manuscript

    PION ELASTIC SCATTERING FROM POLARIZED 13C IN THE ENERGY REGION OF THE [3, 3] RESONANCE

    No full text
    Analyzing powers, Ay, were measured at the Clinton P. Anderson Meson Physics Facility for π+ and π- elastic scattering from polarized 13C in the energy region of the [3,3] resonance. The Ay were found to be small in general and, at small momentum transfers, q < 1 fm-1, were reproduced best by a first order optical potential description and standard nuclear wave functions. At large momentum transfer, q ≈1.8 fm-1, present nuclear structure and π-nucleus reaction models do not reproduce the data

    CARMENES: an overview six months after first light

    No full text
    corecore