45 research outputs found

    The Role of Physical Layer Security in IoT: A Novel Perspective

    Get PDF
    This paper deals with the problem of securing the configuration phase of an Internet of Things (IoT) system. The main drawbacks of current approaches are the focus on specific techniques and methods, and the lack of a cross layer vision of the problem. In a smart environment, each IoT device has limited resources and is often battery operated with limited capabilities (e.g., no keyboard). As a consequence, network security must be carefully analyzed in order to prevent security and privacy issues. In this paper, we will analyze the IoT threats, we will propose a security framework for the device initialization and we will show how physical layer security can effectively boost the security of IoT systems

    The Effect of Video Caching on Network Resource Planning - A Real-Case Study

    Get PDF
    Traffic Engineering is one of the building blocks for a correct network planning. Internet Service Providers are always trying to fulfill the user Quality of Experience (QoE). However, each technological advance brings new services to the user, with new challenges to be solved to maintain the QoE

    COLOMBOS v3.0: leveraging gene expression compendia for cross-species analyses

    Get PDF
    open13siCOLOMBOS is a database that integrates publicly available transcriptomics data for several prokaryotic model organisms. Compared to the previous version it has more than doubled in size, both in terms of species and data available. The manually curated condition annotation has been overhauled as well, giving more complete information about samples' experimental conditions and their differences. Functionality-wise cross-species analyses now enable users to analyse expression data for all species simultaneously, and identify candidate genes with evolutionary conserved expression behaviour. All the expression-based query tools have undergone a substantial improvement, overcoming the limit of enforced co-expression data retrieval and instead enabling the return of more complex patterns of expression behaviour. COLOMBOS is freely available through a web application at http://colombos.net/. The complete database is also accessible via REST API or downloadable as tab-delimited text files.openMoretto, Marco; Sonego, Paolo; Dierckxsens, Nicolas; Brilli, Matteo; Bianco, Luca; Ledezma-Tejeida, Daniela; Gama-Castro, Socorro; Galardini, Marco; Romualdi, Chiara; Laukens, Kris; Collado-Vides, Julio; Meysman, Pieter; Engelen, KristofMoretto, Marco; Sonego, Paolo; Dierckxsens, Nicolas; Brilli, Matteo; Bianco, Luca; Ledezma Tejeida, Daniela; Gama Castro, Socorro; Galardini, Marco; Romualdi, Chiara; Laukens, Kris; Collado Vides, Julio; Meysman, Pieter; Engelen, Kristo

    Volatile organic compounds (VOC) as biomarkers for detection of Ceratocystis platani

    Get PDF
    AbstractCeratocystis platani causes canker stain of plane trees, and it represents a serious disease of Platanus spp. both in the United States and Europe. Current chemical or biological controls do not effectively manage C. platani, so new preventive methods need to be developed in order to limit this pathogen spreading. In this work, we have characterized the main volatile organic compounds (VOC) emitted in vitro from pure cultures of C. platani and other common pathogenic fungal species of hosts plants growing in the same ecosystems as plane trees. We found that C. platani emitted a similar blend of VOC compared with phylogenetically similar species C. populicola. In particular, C. platani was characterized by emission of isoamyl acetate and isobutyl acetate while C. populicola by ethyl acetate and isobutyl acetate, which were not released by any of the other out‐group fungal species grown on the same medium. Moreover, following a targeted approach based on the main VOC found in vitro, we have successfully validated in vivo that VOC uniquely emitted by C. platani (i.e. isobutyl acetate along with isoamyl alcohol) were released from the bark of plane trees following C. platani inoculation. Our results highlight the possibility to exploit VOC emitted specifically by C. platani as biomarkers to recognize Platanus x acerifolia plants infected by this pathogen

    A unique midgut-associated bacterial community hosted by the cave beetle \u3cem\u3eCansiliella servadeii\u3c/em\u3e (Coleoptera: Leptodirini) reveals parallel phylogenetic divergences from universal gut-specific ancestors

    Get PDF
    Background Cansiliella servadeii (Coleoptera) is an endemic troglobite living in deep carbonate caves in North-Eastern Italy. The beetle constantly moves and browses in its preferred habitat (consisting in flowing water and moonmilk, a soft speleothem colonized by microorganisms) self-preens to convey material from elytra, legs, and antennae towards the mouth. We investigated its inner and outer microbiota using microscopy and DNA-based approaches. Results Abundant microbial cell masses were observed on the external appendages. Cansiliella’s midgut is fully colonized by live microbes and culture-independent analyses yielded nearly 30 different 16S phylotypes that have no overlap with the community composition of the moonmilk. Many of the lineages, dominated by Gram positive groups, share very low similarity to database sequences. However for most cases, notwithstanding their very limited relatedness with existing records, phylotypes could be assigned to bacterial clades that had been retrieved from insect or other animals’ digestive traits. Conclusions Results suggest a history of remote separation from a common ancestor that harboured a set of gut-specific bacteria whose functions are supposedly critical for host physiology. The phylogenetic and coevolutionary implications of the parallel occurrences of these prokaryotic guilds appear to apply throughout a broad spectrum of animal diversity. Their persistence and conservation underlies a possibly critical role of precise bacterial assemblages in animal-bacteria interactions

    Relationships between geogenic radon potential and gamma ray maps with indoor radon levels at Caprarola municipality (central Italy)

    Get PDF
    Exposures to relatively high indoor radon (222Rn) levels represents a serious public health risk because Rn is associated with lung cancer (Darby et al., 2001; WHO, 2009; Oh et al., 2016; Sheen et al., 2016). The risk is high because radon, and its short-lived decay products in the atmosphere, contributes for about 60% of the total annual effective dose (UNSCEAR, 2000; WHO, 2009). Cancer risk is increased by smoking being almost 9 times higher than the risk to non-smokers exposed to similar levels (EPA, 2009). Due to these reasons, it is very important to assess the indoor exposure of public to radon and their daughters. Rn is a natural ubiquitous gas and its abundance is mainly controlled by the geology, and in particular by the soil and rock content of its parent nuclide (238U). Furthermore, bedrock characteristics (i.e. permeability and porosity) and also fault activity can affect the amount of Rn released in the ground (Ciotoli et al., 2007; Barnet et al., 2018). As such, in conditions of permeable and/or fractured bedrock and high uranium content, high indoor radon concentrations are expected (Bossew and Lettner, 2007; Gruber et al., 2013; Cinelli et al., 2015; Ielsch et al., 2017; Ciotoli et al., 2017). A non-natural contribution that controls the indoor Rn levels is home construction type and building materials (Vauptic et al., 2002; Appleton, 2007). Additionally, meteorological factors, such as wind, temperature and humidity, can affect the rate of Rn entry into the buildings (Porstendörfer et al., 1994; Miles et al., 2005; Schubert et al., 2018). In this work, we propose a new geospatial technique to construct the geogenic radon potential (GRP) map of the Caprarola municipality (northern Lazio, central Italy) characterized by recent (about 100 Kyr) volcanic deposits with high content in radon parent nuclides (Ciotoli et al., 2017). GRP map has been obtained by using Empirical Bayesian Kriging Regression (EBKR) technique with soil gas radon, as the response variable, and a number of proxy variables (i.e. content of the radiogenic parent nuclides, the emanation coefficient of the outcropping rocks, the diffusive 222Rn flux from the soil, the soil-gas CO2 concentration, the Digital Terrain Model (DTM), the permeability of the outcropping rocks and the gamma dose radiation of the shallow lithology. Furthermore, possible relationships between predicted soil radon values (i.e. GRP) and gamma radiation distribution with the indoor concentrations measured in private and public buildings has been investigated, respectively. The obtained results confirm that GRP maps provide the local administration of a useful tool for land use planning and that, the mapping of gamma emission, allows to a fast and effective evaluation of indoor radon hazard because it is mainly influenced by the building materials rather than other anthropic controls

    How Modelers Model: the Overlooked Social and Human Dimensions in Model Intercomparison Studies

    Get PDF
    There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler’s experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in “trial-and-error” calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler’s assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details.info:eu-repo/semantics/acceptedVersio

    Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils

    Get PDF
    ACKNOWLEDGEMENTS This study was supported by the project “C and N models inter-comparison and improvement to assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014- 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data holders for the Long Term Bare-Fallows, who made their data available and provided additional information on the sites: V. Romanenkov, B.T. Christensen, T. KĂ€tterer, S. Houot, F. van Oort, A. Mc Donald, as well as P. BarrĂ©. The input of B. Guenet and C. Chenu contributes to the ANR “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The input of M. Abdalla contributes to the SUPER-G project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774124.Peer reviewedPostprin

    Deformation and fluid flow during orogeny at the Paleo-Pacific active margin of Gondwana: the Early Palaeozoic Robertson Bay accretionary complex (North Victoria Land, Antarctica)

    No full text
    Structural investigations, integrated with X-ray diffraction, fluid inclusion microthermometry and oxygen-stable isotope analyses are used to reconstruct the deformation history and the palaeo-fluid circulation during formation of the low-grade, turbidite-dominated Early Palaeozoic Robertson Bay accretionary complex of north Victoria Land (Antarctica). Evidence for progressive deformation is elucidated by analysing the textural fabric of chronologically distinct, thrust-related quartz vein generations, incrementally developed during progressive shortening and thickening of the Robertson Bay accretionary complex. Our data attest that orogenic deformation was mainly controlled by dissolution–precipitation creep, modulated by stress- and strain-rate-dependent fluid pressure cycling, associated with local and regional permeability variations induced by the distribution and evolution of the fracture network during regional thrusting. Fracture-related fluid pathways constituted efficient conduits for episodic fluid flow. The dominant migrating fluid was pre-to-syn-folding and associated with the migration of warm (160–200 °C) nitrogen- and carbonic (CO2 and CH4)-bearing fluids. Both fluid advection and diffusive mass transfer are recognized as operative mechanisms for fluid–rock interaction and vein formation during continuous shortening. In particular, fluid–rock interaction was the consequence of dissolution–precipitation creep assisted by tectonically driven cooling fluids moving through the rock section as a result of seismic pumping. The most likely source of the migrating fluids would be the frontal part of the growing accretionary complex, where fluids from the deep levels in the hinterland are driven trough channelization operated by the thrust-related fracture (fault) systems
    corecore