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RESEARCH ARTICLE Open Access

A unique midgut-associated bacterial community
hosted by the cave beetle Cansiliella servadeii
(Coleoptera: Leptodirini) reveals parallel
phylogenetic divergences from universal
gut-specific ancestors
Maurizio G Paoletti1, Luca Mazzon2, Isabel Martinez-Sañudo2, Mauro Simonato2, Mattia Beggio1,
Angelo Leandro Dreon1, Alberto Pamio1, Mauro Brilli3, Luca Dorigo4, Annette Summers Engel5,
Alessandra Tondello1, Barbara Baldan1, Giuseppe Concheri2 and Andrea Squartini2*

Abstract

Background: Cansiliella servadeii (Coleoptera) is an endemic troglobite living in deep carbonate caves in North-
Eastern Italy. The beetle constantly moves and browses in its preferred habitat (consisting in flowing water and
moonmilk, a soft speleothem colonized by microorganisms) self-preens to convey material from elytra, legs, and
antennae towards the mouth. We investigated its inner and outer microbiota using microscopy and DNA-based
approaches.

Results: Abundant microbial cell masses were observed on the external appendages. Cansiliella’s midgut is fully
colonized by live microbes and culture-independent analyses yielded nearly 30 different 16S phylotypes that have
no overlap with the community composition of the moonmilk. Many of the lineages, dominated by Gram positive
groups, share very low similarity to database sequences. However for most cases, notwithstanding their very limited
relatedness with existing records, phylotypes could be assigned to bacterial clades that had been retrieved from
insect or other animals’ digestive traits.

Conclusions: Results suggest a history of remote separation from a common ancestor that harboured a set of gut-
specific bacteria whose functions are supposedly critical for host physiology. The phylogenetic and coevolutionary
implications of the parallel occurrences of these prokaryotic guilds appear to apply throughout a broad spectrum of
animal diversity. Their persistence and conservation underlies a possibly critical role of precise bacterial assemblages
in animal-bacteria interactions.
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Background
The associations between microorganisms and insects are
widespread in nature [1,2]. Relationships between obligate
symbioses and instances of co-evolution have been reported
for mealybugs [3], whiteflies [4], weevils [5], tsetse flies [6],
cockroaches and termites [7], aphids [8], planthoppers [9],
carpenter ants [10]. In previous work of ours we have
examined a number of symbiotic occurrences within
dipterans, describing the novel species ‘Candidatus Erwinia
dacicola’ dwelling in the oesophageal bulb of the olive fly
[11,12] and the novel genus Stammerula, [13]; for
which we highlighted evidences of joint evolution with
the insects [14,15].
Hosting bacteria can result in different benefits for in-

sects, among which a specific nutritional complementa-
tion is critical for those living on a markedly imbalanced
diet, e.g. aphids [16] or ants. In the latter example
trophic metabolism has been recognized as a major con-
tributor of evolutionary shifts [17], as in the case of the
Tetraponera ants [18]. In these ants the onset of herbiv-
ory has been postulated to be the result of the link with
internal bacteria. Further examples include other hy-
menoptera whereby members of the characteristic bac-
terial microbiota of the honey bee Apis mellifera were
absent from most species outside of the corbiculate bees,
and a specific co-evolution between these hymenoptera
and a defined bacterial guild was postulated to explain
such association [19]. All of these relationships have also

been hypothesized to involve oxidative recycling of
nitrogen-rich metabolic waste and are encaged in spe-
cialized hindgut- or midgut-derived pouches. Stinkbugs
host Burkholderia in their midgut crypts [20,21], while
the medicinal leech carries Aeromonas and a member of
the Rickenellaceae in its intestinal assemblage [22,23].
For invertebrates that permanently live in secluded habi-

tats with little exchange with the external biota, such as
cave environments, the importance of microsymbionts can
be particularly critical for host adaptation and survival.
Some cave-dwelling animals owe their life to symbioses
with chemolithoautotrophic bacteria [24,25]. We previously
described a novel genus and two species of a troglobitic
beetle, Cansiliella tonielloi [26,27] and Cansiliella servadeii
(Figure 1a) [28], which are endemic of few karst caves in
Northern Italy. The latter has been the object of more de-
tailed studies [29,30], where we further described the
physico-chemical features of its environment.
The beetles live in a hygropetric habitat in the pres-

ence of a peculiar, soft speleothem called moonmilk,
which consists of carbonate minerals that are constantly
covered by a thin layer of running water [31]. This
habitat type is common in air-filled caves, and is typified
by dripwaters or sheetflow that bring allochthonous,
surface-derived organic matter [32]. Hydrological isola-
tion for some cave hygropetric habitats may restrict the
influx of organic matter, and this can lead to nutritional
limitations for troglobites and troglophiles over extended

Figure 1 Cansiliella servadeii and its habitat. a) Top view of the adult insect. b) detail of the abdomen with indication of the gut position and
coiling; c) insect browsing on moonmilk in Grotta della Foos cave floor. d) sequence showing C.servadeii on location, preening its left antenna
and passing it through mouthparts.
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periods of time and be a major driver for evolutionary
adaptation for troglobites [32].
Moonmilk usually carries high amounts of microbial

biomass [33-38]. In the Grotta della Foos, one of the
cave systems being studied, the wet moonmilk contains
~108 microbial cells/ml and ~104 meiofaunal cells/m2

and its bacterial community characterization is described
in a parallel study of ours [39]. The insect spends most
of its time browsing the moonmilk surface and
frequently self-preening. Videos of live C. servadeii
in Grotta della Foos (http://www.youtube.com/watch?
v=iXF5pDrF2J0) were taken, and its activities and be-
haviour were recorded. The mouthparts are consistent
with reported models of adaptation for browsing/filter-
ing organic particles in semi-aquatic environments
[40], and differ markedly from those of the majority of
other troglobitic Leptodirini [32,41-43]. The mouth-
parts have modified hoe-shaped mandibles and spoon-
like galeae covered by dense setae spaced 1–1.5 μm.
This distance could effectively rake particles of
compatible size, such as bacteria [29,30].
Our previous stable isotope investigations [30] demon-

strated that C. servadeii derives its nutritional require-
ments from the moonmilk and from dissolved organic
matter in the percolating waters. To our knowledge,
there are no molecular studies of the gut microbiota of
cave invertebrates. The current project aimed at charac-
terizing the feeding behaviour of C. servadeii from
Grotta della Foos and the nature of its gut microbiota.
The results provided insights pointing towards the exist-
ence of a universal guild of bacteria which appears to be
common to many animal digestive systems and that sug-
gests to have shared ancestors established prior to their
hosts evolution.

Methods
Sampling site, specimen observation and collection
The Grotta della Foos cave system formed within Monte
Ciaurlec located in north-eastern Italy, and is underlain
by Cretaceous and Triassic limestone units [44] The
cave contains over 2600 m of passages. Ten sampling lo-
cations within the cave were used for the investigations
of behaviour and insect collection. the sites covered
altogether 13.3, square meters, which is the whole area
which Cansiliella is regularly found in Grotta de la Foos
cave. The density monitored varied from 1.4 to 1.8 spec-
imens per square meter. Examined specimen were all
adults and included both sexes. Live C. servadeii were
collected in sterile falcon tubes and transported to the
laboratory.

Microscopy, insect dissection, and gut content evaluation
Insects external teguments were stained with DAPI (5 μg/
ml) and observed in visible light and in epifluorescence

using a Leica DM4000 inverted microscope equipped with
a DFC300 FX camera. Images were acquired by using the
LAS software.
Insects were dissected to remove the midgut to

analyze the intestinal microflora. Before dissection, spec-
imens were stunned by keeping vials at 4°C for 20 min.
To extract the midgut, the insect’s abdomen was opened
under a stereomicroscope (Figure 1b) in a laminar flow
hood using sterile equipment and sterile water. The mid-
gut was transferred in a sterile Eppendorf tube and used
for both bacterial culturability tests and bacterial DNA
extraction and amplification, and was stored at −20°C
until extraction.
A segment of each midgut was observed under mi-

croscopy after staining with the LIVE/DEAD® BacLight
Bacterial Viability Kit (Molecular Probes, California,
USA). Slides were also prepared for Gram staining and
morphological characterization, which was performed
under an Olympus BX60 microscope.

Bacterial cultivation
In order to examine external bacteria adhering to the in-
sect exoskeletal tegument, live specimens collected with
cave water in falcon tubes were handled with sterile for-
ceps and gently touched over the surface of Plate Count
Agar (PCA) (Oxoid) plates.
The possible culturability of the microorganisms

hosted in the insect midgut was verified by plating ali-
quots of resuspended, dissected gut material extracted
onto PCA plates.
All plates were incubated in the dark at 20°C for up to

10 days.

DNA extraction, 16S rRNA gene amplification, cloning,
and sequencing
DNA was extracted from the content of the midguts, as
previously described [45]. PCR amplification targeting
the 16S rRNA gene was carried out in 20 μl, 1x PCR
GoTaqFlexi Buffer (Promega), 2.5 mM MgCl2, 0.1 mM
dNTPs, 0.5 μM of each primer, 1 U of GoTaq Flexi
DNA polymerase (Promega), and 1 μl of a 1:30 dilution
of the DNA extraction. The universal bacterial 16S
rRNA primers used were 63f and 1389r [46] to yield an
expected amplicon of ~1300 bp. The cycling program
consisted of a 95°C 2 min step followed by 35 cycles at
96°C for 30 s, 56°C for 30 s, 72°C for 90 s, and a final ex-
tension at 72°C for 10 min. PCR products were checked
by 1.0% agarose gel stained with SYBR®Safe (Invitrogen)
and purified with the ExoSAP-IT kit (Amersham Biosci-
ences) before sequencing.
Amplicons (1300 bp) were cloned into JM109 compe-

tent cells using the P-GEM-T Easy vectors (Promega),
following the manufacturer’s recommendations. Thirty
clones from each of the three gut specimen samples
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were picked. Transformation was verified using PCR
assays with the M13-T7 universal primers pair. The
amplification products were sequenced by capillary
electrophoretic sanger sequencing using M13 and T7
primers at the BMR Genomics service (Padova, Italy).
Restriction enzyme (BsaI, Euroclone) digestion patterns
of the amplified 16S gene (ARDRA) were used as
a parallel clone screening in addition to nucleotide
sequencing.

Sequence analysis
Sequence chromatograms were visually inspected and
sequences were edited and aligned by using MEGA 4.0.2
(http://www.megasoftware.net/).
Chimeras were searched with the CHIMERA CHECK

program of the Ribosomal Database Project II (http://
rdp.cme.msu.edu).
A BLASTN GenBank analysis of all the sequences was

done through the NCBI website (http://www.ncbi.nlm.
nih.gov/) and closely related sequences from the
databases were retrieved and added to the alignment.
Phylogenetic relationships among newly retrieved gut
microbiota sequences to close relatives were estimated
using a maximum likelihood analysis (ML) with a GTR
+I+G model.
The software package DOTUR [47] was used to assign

sequences to operational taxonomic units (OTUs) for
the bacterial identities found in the midgut of C.
servadeii. This program assigns sequences to OTUs
based on sequence data by using values that are less
than the cut-off level, which were at the 97% and 95%
identity thresholds. The Chao1 richness estimator [48]
was also calculated using DOTUR. The richness esti-
mates are reported for 3% difference between sequences.
16S rRNA gene sequences of clones from the guts of

C. servadeii are accessible under numbers JQ308110 to
JQ308155 and from JX463074 to JX463100.
The sequences from the culturable microbial commu-

nity from the midgut and the external tegument are
accessible under numbers JQ308156 to JQ308165.

Results
Observations of insect behaviour
Live activities were monitored for C. servadeii individ-
uals within Grotta della Foos on six different expeditions
(Figure 1). Consistent behavioural patterns could be
defined from a continuous 24-hour period from eight
specimens. The insect spends 44% of the time at a depth
between 4 and 20 mm under the water that flows over
the moonmilk speleothem. During this activity, the
mouthparts and head are engaged in a prolonged brows-
ing to rubbing motion (Figure 1c). Nearly half of the
time was dedicated to self-preening of the head, legs,
elytra and antennae; this behaviour is suggestive of a

feeding activity as it moves organic particulates from the
body towards the mouth. Typically, during preening, the
insect passed the posterior legs over the elytra, then the
middle legs brushed the posterior ones, the forelegs
brushed the middle ones, each antenna, and then the
forelegs passed between the mandibles and galeae.
Antennae were combed for their entire length, as shown by
the consecutive frames of the sequential series (Figure 1d),
taken from footage available at http://www.youtube.com/
watch?v=iXF5pDrF2J0. The observed aquatic and semi-
aquatic movement actively displaced superficial sediment
granules and disrupted moonmilk into trenches ~0.2 to 3
mm long.
In support of the hypothesis that the browsing and

preening activities are related to feeding, possibly to ac-
quire organic matter or cellular material from the wet
moonmilk, the DAPI fluorescent stain shows that the
hair-covered upper underside and interior legs of the in-
sect body parts, that are continuously rubbed during
preening, are covered by masses of bacteria-containing
material (Figure 2). Crawling across the soft moonmilk,
and passing the antennae tightly by the mouthparts, as
shown by the sequence in Figure 1d, contributes to
scooping up abundant organic material visible on the
ventral segment of the body (Figure 2c).

Presence and viability of midgut bacteria
We explored C. servadeii midgut (Figure 1b) by pulling
it out gently from dissected specimens and staining it
with the Bac/Light live-dead bacterial stain. The results
shown in Figure 3, reveal that abundant alive (green-
staining), prevailingly rod-shaped, bacterial cells fill the
lumen of the gut. In the images, in which the nuclei of
the insect epithelial layers stain in red, profuse live bac-
terial content is seen oozing out from the gut tube in
correspondence of its ruptures. In Figure 3c a hole was
pierced with forceps on the gut wall, through which a
lump of bacterial cells are consequently pouring out.
The data indicate that this cave beetle hosts live prokary-
otes in its digestive tract. In order to investigate their
identities we proceeded with both culture-dependent
and independent approaches as follows.

Culturable microbial community from the external
tegument and midgut
Touching the external tegument of wet live specimens onto
PCA plates resulted in colonies that belonged to four 16S
phylotypes representing three lineages (Gammaproteobacteria,
Actinobacteria, and Firmicutes) (Table 1).
From the extracted insect guts, there were sparse colonies

that grew on PCA plates, and the most frequent morpho-
logical colony type resulted in isolate CP4.1. Sequences
obtained from the external tegument, as well as from the
culturable fraction of midgut bacteria, had high homology
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values (in most cases 99-100%) to bacterial taxa featuring
multiple occurrencies in the nucleotide sequence database
(for references consult the GenBank accession numbers
given in the fourth column of Table 1), although there was
no close affinity to sequences previously retrieved from in-
sect guts.

Culture-independent analysis of the midgut microbial
community
Under the limitations posed by working with a rare en-
demic and protected species with minimum sampling
allowed, we analyzed three specimens from which separ-
ate clone libraries of 16S rRNA gene amplicons were
generated and 87 clones screened. Sequences from the
three different guts are labeled with the suffixes A, B,
and C, respectively, on Table 2. At this resolution level
the number of Dotur-defined species was 29 and the
Chao1 estimator [48] predicted a total number of species
of 51,7. We also calculated the estimated coverage by
applying the Good’s index [49] which, at species level,
resulted 81.6 %. In order to check with an independent
method whether the sampling size had been truly effect-
ive in yielding an adequate representation of the com-
munity, we compared the cluster analysis dendrogram
obtained with the first 46 clones screened (Additional
file 1: Material S1 and Additional file 2: Material S2)
with those generated with the whole set of 87 (Figures 4
and 5), from whose comparison it can be observed that
the community structure was already fully delineated
from the first stepwise subset of randomly selected

clones. Further, considering the phylum rank as a more
functional assessment of population diversity we run rar-
efaction curves with OTUs defined at a phylum level
similarity threshold (81%). The result obtained indicated
a saturating curve and is shown in the supplementary
Additional file 3: Figure S3.
Phylogenetic analyses revealed the presence of six dis-

tinct major phylogenetic groups from the sequenced
clones.
The sequences showed a range of homology values

with the GenBank database records that for most cases
was remarkably low (Table 2).
Considering the totality of the 87 clones, the Firmicutes

phylum represented 58,6% of all retrieved sequences, and
over 60% of the clones showed homologies as low as 92-94
% with existing database subjects. Bacteroidetes represented
16.1% of the sequences, with homologies 89-94% to
GenBank entries. Only few clones of the Actinobacteria
(whose phylum represented 11.5% of the retrieved se-
quences) displayed similarity values qualifying for species
level relatedness (≥97%) with described records.
The remainder of the clones were affiliated with

the Deltaproteobacteria (8.0%) and with the Alpha-
and Betaproteobacteria, classes (<5% each). Although
culturable strains affiliated to the Gammaproteobacteria
were obtained from the gut (Table 1), no clone sequences
affiliated with this class were retrieved, presumably due to
their rarity within the total community.
The taxonomical groups resulted homogeneously dis-

tributed through the samples analyzed. There was no

Figure 2 Cansiliella servadeii observation under epifluorescence stereomicroscope after staining with the DNA-specific DAPI
fluorochrome. a), c): head and torso view; b), d) detail of foreleg underside. a), b): white illumination; c), d): UV illumination. The presence of
masses of bacteria staining with DAPI on the insect head, limbs, antennae and ventral side of body is visible. Scale bars: a), c): 250 μm; b), d):
50 μm.
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statistical difference in the distribution of the phylogen-
etic groups of Firmicutes, Actinobacteria, Proteobacteria
and Bacteroidetes from the different midgut samples
(Fisher’s exact test, P = 0.22). All guts had an outstand-
ing majority of OTUs belonging to the Firmicutes.
Although the BLAST analysis gave similarities that in

most cases were below the species and even genus limit
(respectively for the 89.04% and 63% of the samples),
nevertheless the best matches of a vast majority of
clones corresponded to bacteria occurring in different
insects gut, including ants, termites, and beetles

(Table 2). It is worth adding that more than 80% of these
hosts spend at least part of their life cycle in the soil,
and ~46% of them belong to the Coleoptera order
(Carabidae, Scarabaeidae and Geotrupidae). Another key
finding is the fact that groups of taxonomically distinct
clones from C. servadeii have their respective GenBank
matches in sequences that were found also in the same
insect host species. For example, three non-identical
Clostridiales clones are closely related to three different
bacteria that all come from the coleopteran Pachnoda
epipphiata, [50] which also hosts the closest relatives to

Table 1 Taxonomical assignment based on 16S rRNA gene sequencing of culturable isolates from the external
exoskeleton of Cansiliella servadeii (non-surface sterilized specimens) or from its midgut content (surface-sterilized
specimens)

Taxonomy Isolate, GenBank code Top database similarities (%)1 Habitat of subject2

Tegument γ-Proteobacteria InGrP, (JQ308165) (100) Pseudomonas sp. EU182834 Soil

Actinobacteria InGrG, (JQ3081649) (99.4) Streptomyces sp. JF292927 Endophyte in Lobularia sp.

Actinobacteria InGrA3, (JQ308163) (99.4) Rhodococcussp. HQ256783 Cloud water from mountain summit

Firmicutes InGrA1, (JQ308162) (96.8) Unc.bacterium JF107304 Human skin, antecubital fossa

Midgut γ-Proteobacteria CP1a, (JQ308158) (100) Pseudomonas sp. AB569967 Chitinolitic biota in rhizosphere soil

γ-Proteobacteria CP1b, CP2b, (JQ308159) (100) Pseudomonas sp. AJ243602 Lumbricus rubellus gut (Annelida)

Actinobacteria CP2a, CP3aL, (JQ308160) (100) Streptomyces champavatii HQ143637 Soil

γ-Proteobacteria CP3a, (JQ308161) (100) Unc. Pseudomonas sp. JF500897 Rye grass rhizosphere

Firmicutes CP4.1, CP4.2, (JQ308156) (99.4) Unc. Firmicutes EU005283 Inert surfaces immersed in marine water

Firmicutes CP4.3, (JQ308157) (98.6) Unc.bacterium DQ860054 Anchovy intestinal microflora
1Description of GenBank subjects displaying the top-scoring BLAST alignment results of sequence similarity.
2Animal host or other environment in which the subject having homology with the present sequence s described in GenBank records.

Figure 3 BacLight staining of dissected Cansiliella servadeii midgut resuspended material. Live bacterial cells stain in green while insect
epithelial nuclei stain in red. In a) clumps of bacteria are seen flowing out from the rupture of the bent gut tract. In b) a different portion is
shown and the abundant masses of extracted bacteria. In c) individual bacterial cells are released from the gut epithelium through a hole pierced
with forceps. In d) a region of the gut from which several distinct bacterial cells can be seen along with others in more clustered formations.
Scale bars: a),b): 350 μm,c),d): 50 μm.
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Table 2 Taxonomical assignment of cloned 16S rRNA amplicons from the midgut content of Cansiliella servadeii

OTU
#

Taxonomy Clone and GenBank Code Top database
similarities (%)1

Habitat2

1 Firmicutes 7B, (JQ308118) (92.4) Unc3. bacterium
AB606297

Mouse faeces

(92.1) Unc.
Clostridiaceae
AB088980

Reticulitermes speratus
gut (Isoptera:
Termitidae)

43A;14B; 9B; 33C, (JQ308112, JQ308119, JQ308111, JQ308113) (92.6) Unc. bacterium
AB606297

Mouse faeces

(92.4) Unc. bacterium
DQ815954

Mouse cecum

(92.3) Unc.
Clostridiaceae
AB088980

R. speratus gut

19B; 23C; 25C; 28C; 39C, 50B, 53B, 57B, 73A, 74A (JQ308115, JQ308116,
JQ308110, JQ308114, JQ308117, JX463078, JX463086, JX463088, JX463089),
JX463090

(92.9) Unc. bacterium
AB606297

Mouse faeces

(92.6) Unc.
Clostridiaceae
AB088980

R. speratus gut

41A, (JQ308120) (93.1) Unc. bacterium
AB606297

Mouse faeces

(92.9) Unc. bacterium
DQ815954

Mouse cecum

(92.8) Unc.
Clostridiaceae
AB088980

R. speratus gut

49B (JX463074) (92.9) Unc. bacterium
AB606297

Mouse faeces

(92.6) Unc. bacterium
DQ815954

Mouse cecum

(92.5) Unc.
Clostridiaceae
AB088980

R. speratus gut

2 Firmicutes 10B, (JQ308121) (92.3) Unc. bacterium
EF602946

Mouse cecum

3 Firmicutes 4A; 42A, (JQ308123, JQ308124) (95.9) Unc.
Clostridiales
AB088981

R. speratus gut

(94.4) Unc. bacterium
GU451010

Tipula abdominalis gut
(Diptera: Tipulidae)

67A, 72A (JX463084, JX463085) (94.8) Unc.
Clostridiales
AB088981

R. speratus gut

8B, (JQ308122) (95.5) Unc.
bacteriumEF608549

Poecilus chalcites gut
(Coleoptera:
Carabidae)

4 Firmicutes 32C, (JQ308126) (95.2) Unc.
Clostridiaceae
AB192046

Microcerotermes spp.
gut (Isoptera:
Termitidae)

48A, 68A, 75A (JQ308127, JX463080, JX463091) (95.7) Unc. bacterium
AJ852374

Melolontha
melolontha gut
(Coleoptera:
Scarabaeidae)

5 Firmicutes 21C, (JQ308125) (94,5) Unc. bacterium
FJ374218
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Table 2 Taxonomical assignment of cloned 16S rRNA amplicons from the midgut content of Cansiliella servadeii
(Continued)

Pachnoda spp. gut
(Coleoptera:
Scarabaeidae)

6 Firmicutes 2A;12B, (JQ308128, JQ308129) (97.1) Unc.
Clostridiaceae
AB192046

Microcerotermes spp.
gut (Isoptera:
Termitidae)

6B, (JQ308130) (96.9) Unc. bacterium
FJ374218

Pachnoda spp. larval
gut (Coleoptera:
Scarabaeidae)

46A, 63A (JQ308131, JX463079) (94.5) Unc. bacterium
FJ374218

Pachnoda spp. gut
(Coleoptera:
Scarabaeidae)

7 Firmicutes 15B, (JQ308133) (91.7) Unc. bacterium
EU465991

African elephant
faeces

(90.5) Unc. bacterium
AY654956

Chicken gut

29C, (JQ308132) (91.9) Unc. bacterium
EU465991

African elephant
faeces

(90.7) Unc. bacterium
AY654956

Chicken gut

8 Firmicutes 5A, (JQ308134) (93.8) Unc.
Clostridiales
AB231035

Hodotermopsis
sjoestedti gut (Isoptera:
Termitidae)

9 Firmicutes 69A (JX463081) (94.7) Unc. bacterium
AB088973

R. speratus gut

10 Firmicutes 71A(JX463087) (92.7) Unc. bacterium
AB088973

R. speratus gut

11 Firmicutes 24C, 30C, (JQ308135, JQ308136) (92.6) Unc. Firmicutes
GQ275112

Leptogenys spp. gut
(Hymenoptera:
Formicidae)

12 Actinobacteria 61A (JX463076) (93.2) Unc. Bacterium
FR687129

Paddy soil

13 Actinobacteria 22C; 36C, 51B, 54B (JQ308137, JQ308138, JX463075, JX463083) (97.2) Unc. bacterium
DQ521505

Lake Vida ice cover

(96.9) Unc. bacterium
AM940404

Rhagium inquisitor gut
(Coleoptera:
Cerambycidae)

52B (JX463077) (96.7) Unc. bacterium
DQ521505

Lake Vida, ice cover

(96.5) Unc. bacterium
AM940404

Rhagium inquisitor gut
(Coleoptera:
Cerambycidae)

65A (JX463082) (97) Unc. bacterium
DQ521505

Lake Vida, ice cover

(96.7) Unc. bacterium
AM940404

Rhagium inquisitor gut
(Coleoptera:
Cerambycidae

14 Actinobacteria 45A, (JQ308139) (99.5) Sanguibacter
inulinus HQ326836

Thorectes lusitanicus
gut (Coleoptera:
Geotrupidae)

15 α-Proteobacteria 13B, (JQ308142) (96.2) Unc.
α-proteobacterium
CU920098

Mesophilic anaerobic
digester treating
wastewater sludge

(93.7) Unc. bacterium
FN659093

Lumbricus terrestris gut
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Table 2 Taxonomical assignment of cloned 16S rRNA amplicons from the midgut content of Cansiliella servadeii
(Continued)

16 α-Proteobacteria 58B (JX463098) (100) Brevundimonas
sp.JQ316297

Soil

17 α-Proteobacteria 44A (JQ308143) (92.5) Unc. bacterium
EF667926

Epithelium Hydra
vulgaris

(88.2) Unc. bacterium
HM779996

Adult zebrafish gut

(87.9) Unc. bacterium
EU148629

Agrilus planipennis gut
(Coleoptera:
Buprestidae)

18 δ-Proteobacteria 3A; 20A, 62A (JQ308144, JQ308145, JX463096) (94.3) Unc. δ-
proteobacterium
DQ307712

Macrotermes
michaelsenigut
(Isoptera: Termitidae)

19 δ-Proteobacteria 60B (JX463100) (96) Unc.
Desulfovibrionaceae
JN653048

Gut of millipede
Tachypodoiulus niger

20 δ-Proteobacteria 66A, 70A (JX463092, JX463093) (94.1) Unc. bacterium
FJ374259

P. ephippiata gut
(Coleoptera:
Scarabaeidae)

21 β-Proteobacteria 27C, (JQ308141) (95.2) Unc.bacterium
AJ852369

Melolontha
melolontha gut
(Coleoptera:
Scarabaeidae)

22 β-Proteobacteria 26C, (JQ308140) (96.5) Burkholderiales
bacterium EU073950

Dermolepida
albohirtum gut
(Coleoptera:
Scarabaeidae)

23 Bacteroidetes 11B, (JQ308146) (91.9) Unc. bacterium
AJ576327

Pachnoda ephippiata
gut (Coleoptera:
Scarabaeidae)

18B, (JQ308147) (92.1) Unc. bacterium
HQ728219

Microbial fuel cell

(91.9) Unc. bacterium
AJ576327

P. ephippiata gut
(Coleoptera:
Scarabaeidae)

24 Bacteroidetes 16B, (JQ308148) (92.5) Unc. bacterium
FJ674429

Cattle feedlot

(91.9) Unc.
Bacteroidetes
AB522123

R. santonensis gut
(Isoptera: Termitidae)

(89.2) Unc. bacterium
EF176896

Tipula abdominalis gut
(Diptera: Tipulidae)

25 Bacteroidetes 35C, (JQ308149) (96.2) Unc. bacterium
AJ576327

P. ephippiata gut
(Coleoptera:
Scarabaeidae)

26 Bacteroidetes 64A (JX463097) (94.2) Unc. bacterium
HQ728219

Anode of a glucose-
fed microbial fuel cell

(93.7) Unc. bacterium
AJ576361

P. ephippiata gut
(Coleoptera:
Scarabaeidae)

27 Bacteroidetes 31C, (JQ308150) (93.1) Unc. bacterium
DQ447343

Urban biowaste

(89.3) Elizabethkingia
sp. GU45829

R. speratus gut
(Isoptera: Termitidae)
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some of the Bacteroidetes clones (Table 2). Also, closest
sequences to the clones affiliated with the Clostridiales
and some Proteobacteria have been retrieved from the
gut of the Melolontha melolontha beetle, while several
Clostridiaceae clones and one Bacteroidetes clone were
closely related to sequences that were all retrieved
from the same dipteran host Tipula abdominalis gut
(GU451010). Given the low homologies and the recur-
ring multiple instances it appears highly unlikely that
these occurrences could be coincidental, constituting a
significant element in favour of distant but conserved
host-bacteria interactive relationships, in which given
subsets of bacterial taxa seem to co-occur in a number
of parallel situations hosted by very different insects.
In order to better visualize the distribution of bacterial

phyla found in C. servadeii along with that of the hosts/
habitats where their closest GenBank relatives had been
found, in Figure 6 we plotted these across the span of
16S homology at which the BLAST match was found for
each clone or isolate. Interestingly, for the midgut
clones, the identity levels show a bimodal distribution.
Figure 6a shows the distribution of the bacterial
taxonomical divisions found within Cansiliella’s gut as-
semblages. When the same are inspected as regards the
habitat of the nearest database subject (Figure 6b), a dis-
tinction arises separating the insect-related cases (higher
homology region, peaking at 95%) from the rest of non-
insect environments including mammal guts/faeces, etc.,
(more distant homology region peaking at 93%). The
two peaks (93% and 95%) are significantly different
(Wilcoxon Mann–Whitney test, p<0.01) (Figure 6b). The
fraction of culturable bacteria instead (Figure 6c)

displays high levels of similarity shared in all cases with
non-insect GenBank subjects.

Discussion
Cansiliella spp. mouthparts are distinct from other cave
beetles, in general and from the large majority of the
Leptodirini, and show features uncommon to beetles
with more saprophagous diets [28]. The beetles in
Grotta della Foos have also a semi-aquatic lifestyle asso-
ciated with moonmilk, which is a rich microbiological
substrate mixed with carbonate minerals. Our previous
stable isotope investigations, and observations of moonmilk
particles in beetle mouths, reveal that C. servadeii from
Grotta della Foos derives nutrition from moonmilk and
habitat waters which contain dissolved organic carbon at a
concentration of 10.11 mg/l [30]. The present data show
that the insect midgut hosts a bacterial community whose
members, as far as it can be judged from the sequenced
clones, appear to belong to heterotrophic guilds. The
midgut of the insect contains live bacterial cells whose
culture-independent analysis yielded a bacterial assemblage
dominated by the phyla Firmicutes and featuring presences
of Bacteoridetes, Actinobacteria, together with Alpha-,
Beta- and Deltaproteobacteria. A possible role of these bac-
teria in nutritional physiology with activities within the ni-
trogen metabolism could be postulated on the basis of
parallel examples in other gut systems.
The sampling depth proved suitable as this community

structure was already fully outlined in terms of phyla
and their proportions from the first round of 46 clones.
Upon nearly doubling the number, the whole set of
87 clones maintained the same pattern as the new

Table 2 Taxonomical assignment of cloned 16S rRNA amplicons from the midgut content of Cansiliella servadeii
(Continued)

40C, (JQ308151) (92.8) Unc. bacterium
DQ447343

Urban biowaste

(89.2) Unc.
Bacteroidetes
HM215036

Bumble bee gut
(Hymenoptera:
Apidae)

28 Bacteroidetes 17B; 37C; 34C, 59B (JQ308154, JQ308155, JQ308153, JX463099) (94.9) Unc.
Bacteroidetes
DQ837639

Apis mellifera gut
(Hymenoptera:
Apidae)

55B (JX463095) (94.6) Unc.
Bacteroidetes
DQ837639

Apis mellifera gut
(Hymenoptera:
Apidae)

56B (JX463094) (94.8) Unc.
Bacteroidetes
DQ837639

Apis mellifera gut
(Hymenoptera:
Apidae)

29 Bacteroidetes 38C, (JQ308152) (94.3) Unc.
Bacteroidetes
DQ837639

Apis mellifera gut
(Hymenoptera:
Apidae)

1Description of GenBank subjects displaying the top-scoring BLAST alignment results of sequence similarity.
2Animal host or other environment in which the subject having homology with the present sequence is described in GenBank records.
3Unc. = ‘Uncultured’.
OTUs are defined at 97% similarity threshold. Clones ID are followed by letters A,B or C to identify the three insect guts specimens.
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Figure 4 Maximum likelihood tree of 16S rRNA gene clone sequences recovered of the midgut of Cansiliella servadeii affiliated with
gram-positive bacteria. The sequences of GenBank dataset showing the closest similarity levels have been added. The percentage of replicate
trees in which the associated taxa clustered together in the bootstrap value shown next to the branches. Only values greater than 50 are
indicated. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option).
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sequences merged into groups which had already
appeared. (Additional file 1: Material S1 and Additional
file 2: Material S2 vs. Figure 4 and Figure 5).
Interestingly, as seen from each of the subject score

lists of the BLAST analysis, the identities of the C.
servadeii gut bacteria did not overlap with any of the
sequences already obtained from our parallel project
targeting the bacteria in the moonmilk of the very same
cave [39]. In that work, 169 sequences are described
(and are available in GenBank under the accession num-
bers from EU431666 to EU431834). Although moonmilk
biota encompassed phyla belonging to the Bacteriodetes,

Firmicutes, and Betaproteobacteria, there was no OTU
overlap (no BLAST identity nor close similarity) between
the potentially ingested moonmilk bacteria and the gut-
hosted community described in the present report.
These findings confirm the presence of a gut micro-

biota specificity in C. servadeii similarly to what is found
in the gut of some insects such as soil or humus-feeding
termites [51], european cockchafer larvae (Melolontha
melolontha) [52] and scarab beetle larvae (Pachnoda
spp.) [50,53]. For these insects no correspondence has
been found either between the gut community and the
microbiota of their soil-related diet. On the contrary in

Figure 5 Maximum likelihood tree of 16S rRNA gene clone sequences recovered of the midgut of Cansiliella servadeii affiliated with
Proteobacteria and Bacteriodetes. Sequences from GenBank dataset showing the closest similarity levels have been added. The percentages of
replicate trees in which the associated taxa clustered together in the bootstrap test are shown next to the branches. Only values higher than 50
are indicated. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option).
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Figure 6 Phylotype and host partitioning in GenBank subjects with similarity to Cansiliella-associated bacteria. a) Abundance of 16S
rDNA phylotypes found from the midgut using a culture-independent approach and respective GenBank homology percentage classes. b)
Proportions of insects orders or other environments hosting bacterial subjects resulting in different degrees of sequence homology (x axis) with
clones of the non-culturable microbial community from the midgut. The smaller diagram in the upper right corner shows the same data as line
graphs and by pooling the insect orders together to put in evidence the separation from the cases found in non-insect environments. c)
Proportions of insects orders or other environments hosting bacterial subjects resulting in different degrees of sequence homology (x axis) with
culturable microbial community isolates from the midgut and external tegument. The definition ‘other’ includes all non-insect guts, faeces, and
other habitats as reported in Table 2.
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insects having a more diverse and richer diet such as
crickets and cockroaches higher correspondence be-
tween diet and gut bacterial flora has been identified in
culture-dependent studies [54,55].
While the uncultured clone library community had

such far divergence from known database entries, the
culturable bacteria isolated from external tegument and
midgut showed a much higher sequence similarity to
previously retrieved sequences available in GenBank.
Approximately 86% of these sequences have close or
equal to 100% sequence similarity (average 97%)
(Table 1). In contrast, the uncultured gut clone se-
quences have lower homology to any previously de-
scribed bacterial species or environmental sequences,
with some as low as 92% (Table 2, Figure 6). Among the
dominant OTUs groups, belonging mostly to Firmicutes
and Bacteriodetes phyla, sequence similarity with de-
scribed taxa is ~92% and 94%, respectively, which sug-
gests novel bacterial lineages at the genus-level, if not
higher taxonomic ranks. Such result is nowadays an un-
usual occurrence as the GenBank database contains a
large, ever-expanding number of sequences obtained
from many different microbiological environments, and
it is therefore no longer common to find such low se-
quence homology, especially when working with a set of
several different sequences, all of which turned out con-
sistently distant from known records. Except for two
clones corresponding to OTU 14 and OTU 16 that show
100% identity with the Actinobacteria Sanguibacter
inulinus isolated from the gut of Thorectes lusitanicus
(Coleoptera Geotrupidae) and Brevundimonas sp. iso-
lated from the soil, the rest of the bacterial communities
isolated from the gut of C. servadeii are highly different
from bacteria typical of other gut systems studied until
now by culture-independent methods.
Noteworthy, for a number of different groups of taxo-

nomically distinct bacteria hosted by the cave beetle, the
insect hosting the closest relatives of each case turned
out to be the same (Table 2). For example, the sequences
of given firmicutes, bacteroidetes and betaproteobacteria
happen to have their top matching GenBank subjects
all occurring within the Melolontha scarab. Others,
also encompassing different phyla have their relatives
coinciding within a coleopteran of the Pachnoda
genus, other clusters co-occur in the Dipteran Tipula
abdominalis, others within the termite Reticulitermes
speratus. Given the peculiarity of the sequences, these
repeated occurrences appear non-coincidental and sup-
port the hypothesis of a selection ensuring the mainten-
ance of a given microbial assemblage for a relevant
physiological scope.
Because of the semi-aquatic feeding behaviour of C.

servadeii, it has been speculated that its ancestor, like
that of other hygropetric coleopterans, may have been

aquatic [32]. Neverthelesss, considering that the C.
servadeii gut microbiota having the highest degrees of
homology (95-98%) to previously retrieved sequences
from invertebrate gut bacteria that spend at least a part
of their biological cycle in the soil (Table 2, Figure 4),
and mainly to insects belonging to the Isoptera and
Coleoptera orders, one could in alternative speculate
that the C. servadeii ancestor had a terrestrial origin.
However in available databases, bacteria from aquatic in-
sects could be still poorly represented to enable a thor-
ough assessment in this regard. About these aspects, a
survey of microbial phylotypes from the guts of the
other species in the genus, and a barcoding comparison
of the insect genes are envisaged as parts of future
research.
Considering the evolutionary history of the C.

servadeii and its gut symbiont system, a long history of
separation from other invertebrates and microorganisms
appears to have occurred. At the same time its situation
reveals the existence of phylogenetic similarities across
the digestive tracts of many different hosts (Table 2). It
is conceivable that there may be a common ancestry in-
volving a functional guild of bacteria that has endured
the host lineage separation, as well as the erosion of se-
quence identities, through the paths of independent evo-
lution. The dual pattern of homology among clone
sequences from gut bacteria in Cansiliella to other in-
sects further suggests this scenario (Figure 6b); a pro-
gressive phenomenon of divergence from common
ancestries is suggested by the double-peaking instance of
homology existing between C. servadeii’s sequence quer-
ies and GenBank subjects, that set the insect-dwelling
cases separated from the general intestinal/faecal cases.
It is noteworthy that, while the hosts are set apart by se-
quence homology thresholds, the taxonomical groups of
the bacteria found in Cansiliella are rather evenly repre-
sented across the different homology span (Figure 6a). It
can be seen that Firmicutes, Bacteroidetes and
Proteobacteria are almost equally present throughout
the sequence similarity gradient, underscoring the need
of the whole functional assemblage to be conserved both
in distantly- as well as in recently-diverged hosts. This
emphasizes a supposedly crucial role of a well-defined
set of prokaryotic taxa that appear to have remained in
charge within the alimentary tract of animals in spite of
ages of separation of their hosts.
More recent acquisitions across different hosts appear

to correspond to higher degrees of homology for bacter-
ial symbionts, while acquisitions and symbiotic associa-
tions that are older would correspond to lower degrees
of homology (Figure 6). The evidences depicted in
Figure 6 appear to fit the contour of an evolutionary
path of separation of the midgut bacteria from those of
other insects; it appears that matching bacteria that are
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hosted in other insects (i.e. hosts that are closer to
Cansiliella) share higher homology with its symbionts
(peak at 95%), while those living in animals which are
evolutionarily more distant from the beetle, or in other
habitats, have undergone a correspondingly higher diver-
gence from them (peak at 93%). These instances support
the existence of a group of common ancestors for a set
of different bacteria and a history of isolation and coevo-
lution within the hosts. The same analysis performed
with the culturable biota isolated from the external tegu-
ment or, as a minority, from the midgut, shows the op-
posite scenario (Figure 6c) i.e. a high level of similarity
with non-insect environments (Table 1), suggesting that
plate-culturable taxa are also more prone to spread/re-
produce and be part of a more diffuse cosmopolitanism.

Conclusions
The insects hereby examined feature a defined gut com-
munity of bacteria suggesting a long history of inherit-
ance and a coevolution.with their hosts. Corresponding,
but genetically diverged, microbial assortments appear
to exist, in parallel, in a series of other animals’ digestive
systems. It appears that the reproductive boundaries
arisen between the hosts at their speciation stages, have,
at the same pace, prevented the exchange of their gut
bacteria. The conservation of these sets of prokaryotic
taxa suggests a relevant role in animal physiology.
The evidence of such patterns casts light on their biol-

ogy at both physiological and evolutionary scales. Eluci-
dating, in future studies, the details of the bacterial
transmission in C. servadeii will offer useful insights to
further interpret bacterial evolution and the critical
roles of prokaryotes in the animal-microbe interactions
ecology.
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