22 research outputs found

    Methodological approach for the detection of both microdamage and fluorochrome labels in ewe bone and human trabecular bone

    Get PDF
    International audienceThe purpose of this study was to adapt various staining methods for the detection of microdamage in human bone, while preserving tetracycline labels. We describe two staining methods using calcein green and xylenol orange, first developed in ewe bone samples and validated in human tra-becular bone samples. In ewe bones, we found that calcein green at 0.5 mM concentration diluted in 100% ethanol as well as xylenol orange at 5 mM were the most adequate flu-orochromes both to detect microdamage and preserve the double tetracycline labeling. These results were verified in human trabecular bone (iliac crest for the tetracycline label, and vertebral bone for the double labeling). Results obtained in human bone samples were identical to those in ewes, so this combination of fluorochromes is now used in our laboratory

    Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis.

    Get PDF
    International audienceBone sialoprotein (BSP) and osteopontin (OPN) are both highly expressed in bone, but their functional specificities are unknown. OPN knockout ((-/-)) mice do not lose bone in a model of hindlimb disuse (tail suspension), showing the importance of OPN in bone remodeling. We report that BSP(-/-) mice are viable and breed normally, but their weight and size are lower than wild-type (WT) mice. Bone is undermineralized in fetuses and young adults, but not in older (>/=12 mo) BSP(-/-) mice. At 4 mo, BSP(-/-) mice display thinner cortical bones than WT, but greater trabecular bone volume with very low bone formation rate, which indicates reduced resorption, as confirmed by lower osteoclast surfaces. Although the frequency of total colonies and committed osteoblast colonies is the same, fewer mineralized colonies expressing decreased levels of osteoblast markers form in BSP(-/-) versus WT bone marrow stromal cultures. BSP(-/-) hematopoietic progenitors form fewer osteoclasts, but their resorptive activity on dentin is normal. Tail-suspended BSP(-/-) mice lose bone in hindlimbs, as expected. In conclusion, BSP deficiency impairs bone growth and mineralization, concomitant with dramatically reduced bone formation. It does not, however, prevent the bone loss resulting from loss of mechanical stimulation, a phenotype that is clearly different from OPN(-/-) mice

    Microarchitecture Influences Microdamage Accumulation in Human Vertebral Trabecular Bone

    Get PDF
    It has been suggested that accumulation of microdamage with age contributes to skeletal fragility. However, data on the age-related increase in microdamage and the association between microdamage and trabecular microarchitecture in human vertebral cancellous bone are limited. We quantified microdamage in cancellous bone from human lumbar (L2) vertebral bodies obtained from 23 donors 54–93 yr of age (8 men and 15 women). Damage was measured using histologic techniques of sequential labeling with chelating agents and was related to 3D microarchitecture, as assessed by high-resolution μCT. There were no significant differences between sexes, although women tended to have a higher microcrack density (Cr.Dn) than men. Cr.Dn increased exponentially with age (r = 0.65, p < 0.001) and was correlated with bone volume fraction (BV/TV; r = −0.55; p < 0.01), trabecular number (Tb.N; r = −0.56 p = 0.008), structure model index (SMI; r = 0.59; p = 0.005), and trabecular separation (Tb.Sp; r = 0.59; p < 0.009). All architecture parameters were strongly correlated with each other and with BV/TV. Stepwise regression showed that SMI was the best predictor of microdamage, explaining 35% of the variance in Cr.Dn and 20% of the variance in diffuse damage accumulation. In addition, microcrack length was significantly greater in the highest versus lowest tertiles of SMI. In conclusion, in human vertebral cancellous bone, microdamage increases with age and is associated with low BV/TV and a rod-like trabecular architecture

    Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography.

    No full text
    International audienceThe aim of this study was to determine the contribution of 2D and 3D microarchitectural characteristics in the assessment of the mechanical strength of os calcis cancellous bone. A sample of cancellous bone was removed in a medio-lateral direction from the posterior body of calcaneus, taken at autopsy in 17 subjects aged 61-91 years. The sample was first used for the assessment of morphological parameters from 2D morphometry and 3D synchrotron microtomography (microCT) (spatial resolution=10 microm). The 2D morphometry was obtained from three slices extracted from the 3D microCT images. Very good concordance was shown between 3D microCT slices and the corresponding physical histologic slices. In 2D, the standard histomorphometric parameters, fractal dimension, mean intercept length, and connectivity were computed. In 3D, histomorphometric parameters were computed using both the 3D mean intercept length method and model-independent techniques. The 3D fractal dimension and the 3D connectivity, assessed by Euler density, were also evaluated. The cubic samples were subjected to elastic compressive tests in three orthogonal directions (X, Y, Z) close to the main natural trabecular network directions. A test was performed until collapse of trabecular network in the main direction (Z). The mechanical properties were significantly correlated to most morphological parameters resulting from 2D and 3D analysis. In 2D, the correlation between the mechanical strength and bone volume/tissue volume was not significantly improved by adding structural parameters or connectivity parameter (nodes number/tissue volume). In 3D, one architectural parameter (the trabecular thickness, Tb.Th) permitted to improve the estimation of the compressive strength from the bone volume/tissue volume alone. However, this improvement was minor since the correlation with the BV/TV alone was high (r=0.96). In conclusion, which is in agreement with the statistic's rules, we found, in this study, that the determination of the os calcis bone compressive strength using the 3D bone volume fraction cannot be improved by adding 3D architectural parameters

    Mandibular reconstructed bone quality after filling of defects with dental bone substitutes in beagles.

    No full text
    Annual Meeting of the American-Society-for-Bone-and-Mineral-Research, Houston, TX, SEP 12-15, 2014International audienc

    Determinants of microdamage in elderly human vertebral trabecular bone.

    Get PDF
    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54-95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types

    Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone.

    No full text
    International audiencePrevious studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 vertebrae (n = 49) from recently deceased donors 54-95 years of age (21 men and 27 women). Two trabecular cores were obtained from each vertebra, one for preexisting microdamage and mineralization measurements, and one for BV/TV and quasi-static compression tests. Collagen cross-link content (PYD, DPD, and PEN) was measured on surrounding trabecular bone. Advancing age was associated with impaired mechanical properties, and with increased microdamage, even after adjustment by BV/TV. BV/TV was the strongest determinant of elastic modulus and ultimate strength (r²  = 0.44 and 0.55, respectively). Microdamage, mineralization parameters, and collagen cross-link content were not associated with mechanical properties. These data indicate that the compressive strength of human vertebral trabecular bone is primarily determined by the amount of trabecular bone, and notably unaffected by normal variation in other factors, such as cross-link profile, microdamage and mineralization
    corecore