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      Proteins of the SIBLING (small, integrin-bind-
ing ligand N-linked glycoprotein) ( 1 ) family 
(osteopontin/secreted phosphoprotein-1 [OPN/
SPP-1], bone sialoprotein/integrin-binding sia-
loprotein [BSP/IBSP], dentin sialophospho-
protein, dentin matrix protein-1 [DMP-1], and 
matrix extracellular glycophosphoprotein [MEPE]) 
comprise a structurally and phylogenetically 
homogeneous group of matricellular factors ( 2 ). 
Their genes are grouped as a  “ bone gene cluster ”  
on human chromosome 4 (mouse chromosome 5) 
( 3, 4 ), and they derive from a common ances-
tor shared with other enamel, milk, and saliva 
calcium-binding proteins, likely secreted protein 
acidic and rich in cysteine like-1 (SPARCL-1)/
Hevin, which is a relative of SPARC/osteonectin 
( 5 ). Although originally thought to be restricted 

to mineralized tissues, the SIBLINGs are now 
known to be expressed in other tissues and 
organs, such as salivary glands ( 6 ) and kidney ( 7 ). 
The multiple functions of OPN (for review see 
[ 8 ]), which is one of the earliest known and the 
best studied members of the family, range from 
infl ammation to lactation and cancer, suggesting 
that it is best described as a cytokine ( 9 ). The 
SIBLINGs interact with cells, especially via inte-
grins, and with bone mineral, and are thus in a 
key position to regulate bone development, re-
modeling, and repair ( 1 ). 

 Although expression of DMP-1 and MEPE 
is restricted mainly to osteocytes, BSP (for re-
view see [ 10 ]) and OPN have long been known 
to be highly expressed by osteoblasts, hyper-
trophic chondrocytes, and osteoclasts, where 
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 Bone sialoprotein (BSP) and osteopontin (OPN) are both highly expressed in bone, but their 

functional specifi cities are unknown. OPN knockout (  � / �  ) mice do not lose bone in a model 

of hindlimb disuse (tail suspension), showing the importance of OPN in bone remodeling. 

We report that BSP  � / �   mice are viable and breed normally, but their weight and size are 

lower than wild-type (WT) mice. Bone is undermineralized in fetuses and young adults, but 

not in older ( ≥ 12 mo) BSP  � / �   mice. At 4 mo, BSP  � / �   mice display thinner cortical bones 

than WT, but greater trabecular bone volume with very low bone formation rate, which 

indicates reduced resorption, as confi rmed by lower osteoclast surfaces. Although the 

frequency of total colonies and committed osteoblast colonies is the same, fewer mineral-

ized colonies expressing decreased levels of osteoblast markers form in BSP  � / �   versus WT 

bone marrow stromal cultures. BSP  � / �   hematopoietic progenitors form fewer osteoclasts, 

but their resorptive activity on dentin is normal. Tail-suspended BSP  � / �   mice lose bone in 

hindlimbs, as expected. In conclusion, BSP defi ciency impairs bone growth and mineraliza-

tion, concomitant with dramatically reduced bone formation. It does not, however, prevent 

the bone loss resulting from loss of mechanical stimulation, a phenotype that is clearly 

different from OPN  � / �   mice. 
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  RESULTS  

 BSP  � / �   mice are smaller and have shorter 

hypomineralized bones 

 BSP  � / �   mice are viable and breed normally with a Mende-
lian ratio of genotypes in progeny. However, the weight and 
size of both male and female BSP  � / �   mice are lower than their 
WT counterparts at 4 mo and up to 16 mo ( Fig. 1, A – C ).  
This is independent of nutritional defi cit, as indicated by the 
percentage of fat in body mass, which does not diff er be-
tween the two genotypes ( Fig. 1 D ). Bone size parameters 
parallel the overall size measurements, with shorter femora 
( Fig. 1, E and F ) and thinner cortices ( Fig. 1, G and H ) in 4-mo-
old mutants. Although with age cortical thickness of mutant 
bones reaches a size equivalent to that of WT ( Fig. 1 H ), fe-
mur length does not ( Fig. 1 F ). No diff erence in growth plate 
thickness in adult (4 – 6 mo old) BSP  � / �   versus WT mice was 
detectable (unpublished data). 

 Bone mineral density (BMD) of femurs of mutant mice is 
20% lower than in WT mice at 4 mo of age, but equivalent in 
older mice (12 mo old; not depicted). Quantitative  μ CT analy-
sis of midshaft femoral cortical bone showed that bone matrix 
mineralization (in milligrams of hydroxyapatite/centimeter 3 ) is 
 � 9% lower in BSP  � / �   mice compared with WT animals at 
birth (embryonic day [E]18 fetuses), and  � 5% lower at 4 mo of 
age, but not signifi cantly diff erent at 12 mo of age ( Table I ).  
Quantitative microradiography (assessing the frequency distri-
bution of mineral density on cortical and trabecular area of 
bone slices [ 17 ]) of a small sample of BSP  � / �   and WT male and 
female mice confi rmed these fi ndings (unpublished data). 

 BSP  � / �   mice display high trabecular bone mass 

with low turnover 

 The trabecular bone volume (BV/TV) in long bones ( Fig. 2, 
A and B ) of BSP  � / �   male and female mice is  � 25 – 40% higher 

their functional roles are only beginning to be understood 
( 1 ). In vitro data suggest that BSP ( 11 ), but not the ubiqui-
tous OPN ( 11, 12 ), may initiate hydroxyapatite crystal forma-
tion in the bone matrix. Similar to OPN ( 13 ), BSP expression 
is increased in osteoblasts subjected to mechanical stimula-
tion ( 14 ). Mice with the OPN gene ablated do not lose bone 
after mechanical unloading (tail suspension [ 15 ]) or upon es-
trogen withdrawal (ovariectomy [ 16 ]), showing the impor-
tance of OPN in the regulation of bone remodeling by 
osteoblasts and osteoclasts. These observations, together with 
their coexpression in osteogenic cells actively involved in bone 
deposition/remodeling, indicates the importance of estab-
lishing the functional specifi cities and degree of redundancy 
of OPN and BSP in the skeleton. To this end, we prepared 
and characterized knockout mice lacking expression of BSP 
(BSP  � / �  ), whose phenotype and response to tail suspension 
are distinct from OPN  � / �   mice and other members of the 
SIBLING family. 

  Figure 1.     Morphology and skeletal morphometry of BSP  � / �   mice.  

Picture (A), measurements of body length (B), body weight (C), and per-

centage of fat mass (D) of  +/+  and   � / �   mice.  μ CT scout images of whole 

femurs (E), and femur length (F) at 4 and 12 mo of age for WT ( +/+ ) and 

mutant (  � / �  ) female mice; similar results were obtained with males (not 

depicted). Two-dimensional images of midshaft sections in specimens 

from both genotypes (G) and cortical thickness (H) at 4 and 12 mo of age 

for  +/+  and   � / �   male and female mice. Values are the mean  ±  the SEM of 

6 – 10 samples. **, P  <  0.01; ****, P  <  0.0001 versus matched WT; #, P  <  

0.05 versus matched females.   

  Table I.    Tissue mineralization of cortical bone, measured by 

 � CT in femurs of WT and BSP  � / �   mice 

Age Sex Genotype mg HAP/cm 3 % Difference with 

 +/+   a  

E18 Fetus  +/+ 269  ±  12.6

  � / �  245  ±  10.4  b   � 8.90%

4 mo Male  +/+ 1,331  ±  23.0  c  

  � / �  1,266  ±  30.0  d   ,   e   � 4.90%

Female  +/+ 1,378  ±  10.5

  � / �  1,313  ±  17.8  d   � 4.70%

12 mo Male  +/+ 1,468  ±  40.8  f  

  � / �  1,465  ±  16.4  f   � 0.20%

Female  +/+ 1,344  ±  23.3

  � / �  1,310  ±  9.2  � 2.50%

  a  Signifi cant differences with WT are shown in bold.

 b P  <  0.01 versus matched WT.

 c P  <  0.01 versus matched sex.

 d P  <  0.001 versus matched WT.

 e P  <  0.001 versus matched sex.

 f P  <  0.05 versus matched sex.
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relate with reduced surfaces of cuboidal (plump) osteoblasts 
(Ob.S/BS;  Fig. 2 D ). In contrast, osteoid surface (OS/BS) 
and thickness (O.Th) are increased in BSP  � / �   mice, as well as 
mineralization lag time (MLT;  Fig. 4 D ), refl ecting delayed 
primary mineralization. Osteoclast surfaces (Oc.S/BS) are re-
duced in mutant compared with WT femur of both sexes 
( Fig. 2 C ). A similar phenotype is observed in tibia, where 
osteoclast numbers (N.Oc/B.Ar) were also found to be sig-
nifi cantly reduced in BSP  � / �   mice ( Fig. 2 C ). 

 Both bone nodule mineralization and osteoclast 

differentiation are impaired in cultures of BSP  � / �   cells 

 Total mesenchymal progenitor cell (total CFU-F) and osteo-
progenitor frequency were assessed in WT and mutant male 
and female bone marrow stromal cell cultures ( Fig. 3 A ).  In 

than in WT.   This higher bone volume is associated with 
higher trabecular number (TbN) and lower trabecular separa-
tion (TbSp) in mutant versus WT bones, although trabecular 
thickness tends to be smaller in mutant mice ( Table II ).  Dou-
ble fl uorochrome labeling revealed a very low bone forma-
tion activity in 4-mo-old male and female BSP  � / �   compared 
with WT mice ( Fig. 2 C  and  Table II ), both in terms of la-
beled surfaces (MS/BS) and apposition rate (MAR), resulting 
in a dramatically reduced bone formation rate (BFR). Low 
dynamic parameters of bone formation in BSP  � / �   mice cor-

  Figure 2.     BSP  � / �   mice have higher trabecular bone density and 

lower bone turnover.  (A) Trabecular bone volume in tibias of 4-mo-old 

mutant (  � / �  ) and WT ( +/+ ) mice of either sex as measured by three-dimen-

sional  μ CT. (B) Three-dimensional reconstruction and trichrome-stained 

sections of  +/+  and   � / �   female femur. Bar, 0.5 mm. (C) Histomorphometric 

parameters of bone formation and resorption in the femur of male and 

female mice, and the tibia of female  +/+  and   � / �   4-mo-old mice. (D) Histo-

morphometric assessment of osteoblast surface and osteoid mineraliza-

tion in the tibia of 4-mo-old  +/+  and   � / �   female mice. All values are the 

mean  ±  the SEM of 5 to 9 mice. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001 

versus matched  +/+ .   

  Figure 3.     Impaired mineralized bone nodule formation and osteo-

clast differentiation, but not activity, in cultures of BSP  � / �   cells.  

Micrographs (A) and quantifi cation of total colony forming units-fi bro-

blasts (CFU-F; B), unmineralized ALP +  colonies (CFU-ALP; C) and mineral-

ized ALP +  colonies (CFU-O; D) in bone marrow stromal cell cultures of 

female mutant (  � / �  ) and WT ( +/+ ) mice. Values are the mean  ±  the SEM of 

8 – 15 wells. (E) Micrographs of  +/+  and   � / �   female spleen cells grown with 

RANKL+M-CSF and stained for TRAP activity (TRAP + ); (F) number of TRAP +  

cells; (G) number of osteoclasts (TRAP +  cells with  ≥ 3 nuclei) formed in 

spleen cell and bone marrow cultures. Values are the mean  ±  the SEM of 

12 wells. (H) Number of resorption pits on dentine slices plated with  +/+  

and   � / �   differentiated osteoclasts; values are the mean  ±  the SEM of six 

slices. ***, P  <  0.001; ****, P  <  0.0001 versus matched WT.   
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lower number of TRAP-positive cells and of multinucleated 
osteoclasts form in spleen cells ( Fig. 3, E and F ) and bone 
marrow cultures ( Fig. 3 F ) from BSP  � / �   versus WT mice. 
Although osteoclasts formed in BSP  � / �   cultures appear smaller 
than those in WT cultures ( Fig. 3 E ), when diff erentiated, 
osteoclasts were replated onto dentine slices. No signifi cant 
diff erence in either the number ( Fig. 3 G ) or the mean area 
( Fig. 3 H ) of resorption pits was observed between the 
two genotypes. 

 BSP  � / �   mice express aberrant levels of osteoblast markers 

 Expression of major osteoblast markers was assessed by quantita-
tive RT-PCR of RNA from long bones of 4-mo-old mutant 
and WT mice; OPN expression is decreased in BSP  � / �   bones, 
whereas all other markers tested do not vary signifi cantly ( Fig. 
4 A ).  Real-time PCR analysis of osteoblast marker expression 

cultures from both sexes (males not depicted), the total number 
of CFU-F ( Fig. 3 B ) and the subset of putative osteoprogeni-
tors (CFU-ALP = colonies with ALP +  cells, but unmineral-
ized matrix;  Fig. 3 C ) is the same in BSP  � / �   and WT stromal 
cells, but the number of mature osteoblast colonies (CFU-O = 
colonies double-positive for ALP activity and mineral deposi-
tion) is dramatically reduced ( Fig. 3, A and D ). A signifi cantly 

  Table II.    Static and dynamic trabecular bone parameters in 

long bones of control and unloaded WT (WT) and BSP  � / �   mice 

Genotype    WT    BSP  � / �  

Treatment Control Unloaded Control Unloaded Sex

Static parameters  a  

SMI 2.3  ±  0.1 3.0  ±  0.1  b   ,   c  1.7  ±  0.1  d  2.0  ±  0.1  e  Male

Tb.N 

(/mm)

3.6  ±  0.2 2.3  ±  0.2  e  6.1  ±  0.3  f  5.4  ±  0.3  e  

Tb.Th 

( μ m)

51  ±  1.8 46  ±  0.8  e  53  ±  1.6 48  ±  1.1  e  

Tb.Sp 

( μ m)

30  ±  2.6 39  ±  3.2  e  16  ±  0.8  g  18  ±  1.1  e  

 n 9 12 6 6

               
SMI 2.1  ±  0.1 2.4  ±  0.04  e  2.2  ±  0.1 2.6  ±  0.1  h  Female

Tb.N 

(/mm)

2.1  ±  0.1 2.4  ±  0.2 3.7  ±  0.3  g  3.2  ±  0.3  i  

Tb.Th 

( μ m)

67  ±  1.4 53  ±  2.0  i  47 ± 1.6  f  46  ±  2.1

Tb.Sp 

( μ m)

50  ±  3.0 44  ±  3.3 28  ±  2.5  g  34  ±  4.2

 n 7 8 6 8

Dynamic parameters  j  

N.Oc/B.Ar 

(/ μ m 2 )

379  ±  50 383 ± 42 346  ±  39 354  ±  65 Male

MS/BS 

(%)

13.04  ±  2.69 6.14  ±  1.41  e  4.93  ±  1.68  k  1.18  ±  0.27  h  

MAR

( μ m/day)

2.38  ±  0.36 1.31  ±  0.10  h  1.49  ±  0.19  k  1.55  ±  0.88

 n 9 9 7 9

N.Oc/B.Ar 

(/ μ m 2 )

288  ±  50 384  ±  63 277  ±  38 386  ±  37 Female

MS/BS 

(%)

21.51  ±  3.19 6.38  ±  1.53  i  4.93  ±  1.34  g  5.28  ±  1.12

MAR

( μ m/day)

2.98  ±  0.18 1.18  ±  0.22  i  1.11  ±  0.14  g  1.17  ±  0.13

 n 9 10 7 7

See Materials and methods for details.

 a  μ CT analysis on excised tibias.

 b P  <  0.0001 versus loaded control.

 c Results are the mean  ±  the SEM.

 d P  <  0.01 versus matched WT.

 e P  <  0.05 versus loaded control.

 f P  <  0.0001 versus matched WT.

 g P  <  0.001 versus matched WT.

 h P  <  0.01 versus loaded control.

 i P  <  0.001 versus loaded control.

 j Histomorphometry on excised femurs.

 k P  <  0.05 versus matched WT.

  Figure 4.     In vivo and in vitro effects of BSP deletion on osteoblast 

marker expression.  (A) Real-time PCR analysis of osteocalcin (OCN), 

OPN, tissue nonspecifi c alkaline phosphatase (ALP), type I collagen (COLL I), 

osterix (OSX), osteoprotegerin (OPG), and receptor-activator of NF- � B 

(RANKL) mRNA expression in femurs of 4-mo-old male BSP  � / �   mice. Val-

ues are the mean  ±  the SEM of 3 – 4 mice (except for OSX) normalized to 

housekeeping gene L32 and expressed as the percentage of WT levels. 

(B) Time course of expression of COLL I, OCN, OSX, and OPN mRNA as 

assessed by real-time PCR in bone marrow cultures of WT (empty symbols) 

and mutant (black symbols) mice, grown in osteogenic conditions. Values 

were normalized to time-matched levels of the housekeeping gene L32. 

*, P  <  0.05; **, P  <  0.01; ***, P  <  0.001; ****, P  <  0.0001 versus matched WT.   
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to osteomalacia ( 23 ), at least in part through up-regulation 
of FGF23 ( 24 ) and MEPE ( 25 ), whereas absence of the lat-
ter results in high bone mass ( 22 ). Similarly, studies in vitro 
under carefully controlled conditions suggest that OPN is a 
strong inhibitor of hydroxyapatite crystal growth, whereas 
BSP ( 11 ) and DMP-1 ( 26 ) are promoters of mineralization. 
The recent characterization of OPN/ALP double-knockout 
mice, in which the osteomalacia caused by the lack of ALP 
activity is partly rescued by the absence of OPN, supports a 
role for OPN as a mineralization inhibitor ( 27 ). Interestingly, 
OPN  � / �   mice were also reported to have hypermineralized 
bone matrix ( 27, 28 ), in striking contrast to the hypominer-
alization that we document in BSP knockout mice. BSP was 
shown to be associated with bone acidic glycoprotein-75 and 
ALP in specifi c structures ( “ biomineralization foci ” ) that are 
sites of mineral nucleation in the matrix of primary mem-
brane bone ( 29, 30 ). The hypomineralization of bone nod-
ules formed in cultures of cells from BSP  � / �   mice, the slight 
but signifi cant mineral defi cit in BSP  � / �   mice at birth ( � 9%), 
and the increased MLT in adult bone are compatible with 
a role of BSP in early bone matrix mineralization, whereas 
the progressive recovery with age of matrix mineral content 
( Table I ) would suggest that this protein has no major and/
or a redundant function in mature bone. However, the re-
duced expression of OPN in whole BSP  � / �   bones and the 
delayed peak of OPN in osteogenic mutant marrow cultures 
suggest a more complex situation in which down-regulation 
of OPN may be a compensatory response to loss of BSP, and 
more work is needed to establish the part played by each 
SIBLING family member in the development and regulation 
of matrix mineralization. 

 Although the affi  nity of SIBLINGs for hydroxyapatite 
and the ability to regulate crystal growth/nucleation were 
among the earliest characteristics identifi ed for members of 

in diff erentiating cultures showed higher levels of mRNAs 
for all markers in early cultures (day 13; day 17 for OPN), but 
reduced (osteocalcin) or delayed peak expression (all other 
markers) in later cultures ( Fig. 4 B ).  

 BSP  � / �   mice lose bone under conditions of unloading 

 Both male and female WT and BSP  � / �   mice lose trabecular 
bone in the tibiae after 2 wk of tail suspension ( Fig. 5  and  
 Table II ).  Changes in BV/TV parallel other structural pa-
rameters of trabecular bone ( Table II ). As previously de-
scribed in unloaded mice ( 18 ), trabecular bone loss in WT 
mice correlates with a dramatic decrease in BFR ( Fig. 5 ) 
caused by a signifi cant reduction of both MS/BS and MAR 
( Table II ). BFR decrease upon unloading is detected in mu-
tant males ( Fig. 5 ). Osteoclast surface is also increased by 
hindlimb unloading in both genotypes, at least in females 
( Fig. 5 ), whereas osteoclast numbers show a nonsignifi cant 
trend to increase ( Table II ). 

  DISCUSSION  

 The close phylogenic relationship between SIBLING family 
members ( 5 ), as well as their marked structural similarities 
( 1, 19 ), raise questions about their functional specifi cities, 
 especially in the context of bone. Indeed, mouse models in 
which particular SIBLINGs are knocked out ( 20 – 24 ) have 
displayed a variety of distinct phenotypes. For instance, both 
DMP1 and MEPE strongly regulate bone mineralization, 
but in opposite ways, with absence of the former leading 

  Figure 6.     Strategy for deletion of the  bsp  gene.  (A) A schematic 

representation of the WT and mutant alleles and the targeting vector. E, 

EcoRI; H, HindIII; B, BamHI; X, XbaI; N, NotI; K, Kpn. (B) Southern blot 

analysis of tail DNA from WT ( +/+ ), heterozygote ( +/ �  ) and knockout (  � / �  ) 

mouse littermates. The presence of the 3.2-kb wild-type fragment and 

the 4.8-kb recombinant fragments are seen in genomic DNA digested 

with HindIII. (C) Northern blot analysis of BSP mRNA expression in 

calvaria and femur bones of young and adult  +/+  and   � / �   mice. L32, 

housekeeping gene.   

  Figure 5.     BSP  � / �   mice lose bone upon unloading.  Three-dimensional 

 μ CT assessment of trabecular bone volume in tibia, and histomorphomet-

ric assessment of BFR and osteoclast surfaces (Oc.S/BS) in femur of mu-

tant (  � / �  ) and WT ( +/+ ) control (CT) or 15-d tail-suspended (Unloaded, Uld) 

male and female mice. Values are the mean  ±  the SEM of 7 – 9 samples. 

*, P  <  0.05; **, P  <  0.01; ***, P  <  0.001 versus matched CT.   
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RT-PCR results documenting an altered expression of late 
osteoblast markers, perhaps matrix-driven (low type I colla-
gen), in BSP  � / �   marrow cultures, which is likely to impair 
the deposition of mineralized matrix. Our results are in agree-
ment with recent data from osteoblasts treated with siRNA 
of intact and mutant BSP ( 46 ), which also indicate that the 
RGD-containing portion of the sequence is necessary for 
phenotypic regulation by BSP. These in vitro data are consis-
tent with the low rate of bone formation observed in vivo, 
and thus the observation that BSP  � / �   mice actually display a 
higher trabecular bone mass strongly suggests that bone re-
sorption is concomitantly reduced. 

 It is notable that the loss of BSP does not aff ect osteo-
clast capacity to resorb normal (BSP-containing) dentine, 
suggesting that endogenous BSP production by osteoclasts 
is not required for resorption. On the other hand, absence 
of BSP does impair osteoclast diff erentiation in vitro, which 
is consistent with previous in vitro studies implicating BSP 
in regulation of osteoclast diff erentiation and activity ( 47 ), 
together with RANKL ( 48 ). That the same is true in vivo 
is supported by our observation that, whereas OPG and 
RANKL expression are normal, there is a reproducible re-
duction of the percentage of area covered by osteoclasts in 
BSP  � / �   mice, and a less consistent reduction in osteoclast 
numbers. Osteoclasts and their precursors adhere to BSP 
through the  � v � 3 integrin receptor, and this interaction is 
thought to be an important regulator of their diff erentiation 
and activity ( 47, 49 ). It is thus possible that the diff erentia-
tion of osteoclasts and, as is the case for OPN  � / �   mice ( 50 ), 
their resorptive activity in vivo (on matrix lacking BSP), is 
signifi cantly impaired via an integrin outside-in pathway, 
but further studies will be necessary to clarify this point. 

 Overall, the phenotype of BSP  � / �   mice strikingly con-
trasts that seen in OPN  � / �   mice. The latter have a normal 
BFR, but a higher trabecular bone mass with increased num-
bers of poorly resorbing osteoclasts ( 50 ). Also, as previously 
mentioned, OPN  � / �   mice do not lose bone with hindlimb 
unloading, which is an established model of disuse osteopo-
rosis ( 15 ). In contrast, and despite their low turnover, mice 
lacking BSP respond to hindlimb unloading by a signifi cant 
trabecular bone loss. As previously shown ( 18 ), hindlimb 
unloading induces a transient increase of bone resorption 
followed by a more sustained inhibition of bone formation. 
After 15 d of unloading, WT mice show strongly reduced 
BFR with only a trend to increased osteoclast numbers and 
(in females) surfaces in our experiments, indicative of a late-
stage bone response. In BSP  � / �   mice, BFR reduction is ob-
served only in males, whereas the increased osteoclast surface 
is seen only in females, likely caused by distinct kinetics be-
tween the two sexes. Collectively, our data suggest that os-
teoblastic formation and osteoclastic resorption are modulated 
by unloading in BSP  � / �   mice, the latter likely accounting 
for most of the bone loss, given the low BFR. Although, as 
mentioned, our in vitro results on dentin cannot discount re-
duced in vivo osteoclast activity in BSP  � / �   mice, older mu-
tant animals do lose trabecular bone (not depicted), which is 

this family, it is now clear that these proteins are involved in 
numerous other physiological processes. For example, recent 
investigations have implicated SIBLINGs in the regulation 
of MMP activity ( 31 ). This, together with their well-known 
capacity to mediate cell attachment ( 32 – 36 ), suggests that 
SIBLINGs are important factors in normal and pathogenic 
tissue remodeling, e.g., in cancer ( 37 – 40 ), and possibly in 
bone. The latter hypothesis is supported by the phenotype of 
BSP  � / �   mice. 

 The shorter size of BSP  � / �   mice correlates with the re-
duced size of long bones. The complex process of endochon-
dral ossifi cation involves interplay between osteoblasts and 
chondrocytes, two BSP-expressing cell types (the latter at the 
hypertrophic stage), as well as vascularization, in which BSP 
may play a regulatory role ( 41 ). Detailed studies are being 
carried out to describe precisely at the tissue level the time 
course of skeletogenesis and long bone growth in BSP  � / �   
mice, and clarify the cell types and mechanisms aff ected by 
BSP deletion. 

 The reduced cortical thickness and BFR of BSP  � / �   mice 
are consistent with both the expression of BSP in actively 
bone forming/remodeling cells and its known and putative 
functions in cell attachment and tissue processing. Together 
with several previous in vitro studies ( 42 – 46 ), these results 
indicate that BSP is a potent regulator of osteoblast diff eren-
tiation and/or activity. It is also notable that the absence of 
BSP does not appear to alter the total mesenchymal progeni-
tor cell pool, osteoprogenitor recruitment, or early diff eren-
tiation, as the total number of CFU-F and CFU-ALP is not 
detectably changed. However, the strikingly lower number 
of mineralized colonies indicates that BSP is required for late 
stages of (at least) primary osteogenesis. This is confi rmed by 

  Table III.    PCR primers in 5 � -3 �  direction 

Gene Sequence  a  PrimerBank ID Product

size (bp)

ALP F-CCAACTCTTTTGTGCCAGAGA

R-GGCTACATTGGTGTTGAGCTTTT

6671533a1 110

Col1  � 1 F-GCTCCTCTTAGGGGCCACT

R-CCACGTCTCACCATTGGGG

34328108a1 103

L32  b  F-CACAATGTCAAGGAGCTGGAAGT

R-TCTACAATGGCTTTTCGGTTCT

NA 100

OCN F-CTGACCTCACAGATGCCAAGC

R-TGGTCTGATAGCTCGTCACAAG

13811695a1 187

OPN F-AGCAAGAAACTCTTCCAAGCAA

R-GTGAGATTCGTCAGATTCATCCG

6678113a1 134

OSX F-ATGGCGTCCTCTCTGCTTG

R-TGAAAGGTCAGCGTATGGCTT

18485518a1 156

OPG F-GGGCGTTACCTGGAGATCG

R-GAGAAGAACCCATCTGGACATTT

31543882a2 125

RANKL F-CCAGCTATGATGGAAGGCTCA

R-CGTACAGGTAATAGAAGCCA

NA 223

NA, not available.
 a F, forward; R, reverse.

 b Designed with Primer Express software, version 2.0 (PerkinElmer).
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 Hindlimb unloading.   16-wk-old male and female BSP  � / �   and WT mice 

were either subjected to hindlimb unloading through tail suspension or 

kept unsuspended ( n  = 10 per treatment group) for 15 d. Each suspended 

and control animal was single-housed in a polycarbonate cage (26 × 15 × 14 

cm); suspended cages were raised by a frame supporting the suspension 

hanging system. Tail suspension experiments were performed with standard 

housing conditions as above. After sacrifi ce, the long bones were dissected 

out and processed for histomorphometry and/or  μ CT, as described in 

these sections. 

 Histology and histomorphometry.   Fetuses at term (E18) and bones from 

adult specimens were processed undecalcifi ed for histology. 6 and 2 d before 

death, adult animals were labeled with 25 mg/kg tetracycline by intraperito-

neal injection. Mice were killed by cervical dislocation, and long bones were 

dissected out and fi xed in 3.7% paraformaldehyde in PBS. Fetuses were fi xed 

and dehydrated in the same way. Undecalcifi ed bone samples were embedded 

in methylmethacrylate, and longitudinal coronal slices were cut with a Jung 

model K microtome (Reichert-Jung) and used for modifi ed Goldner staining, 

tartrate-resistant acid phosphatase (TRAP) staining (without counterstaining) 

of osteoclasts, or left unstained. Trabecular bone volume (BV/TV), osteoblast 

surface (Ob.S/BS), osteoid surface (OS/BS), and thickness (O.Th) were mea-

sured on Goldner-stained sections. Dynamic bone remodeling parameters 

were measured by histomorphometry after double-tetracyclin labeling (on 

unstained sections for labeled surfaces [MS/BS], mineral apposition rate 

[MAR], and BFR [BFR/BS]). These parameters were combined to assess os-

teoid mineralization through MLT (MLT = [O.Th  ×  OS]/[MS  ×  MAR]) 

and Osteoid Maturation Time (OMT = O.Th/MAR). Osteoclast surfaces 

(Oc.S/BS) and numbers (N.Oc/B.Ar) were measured on TRAP-stained sec-

tions. Fetus sections were stained with von Kossa for mineral or toluidine blue 

for cartilage. Quantitative microradiography was done on 100- μ m-thick sec-

tions of tibiae from 10-mo-old mice, and bone matrix mineralization (grams/

centimeter 3 ) was measured as previously described ( 17 ). 

 High-resolution   μ  CT.   Fetuses at term (E18), fi xed and ethanol-dehy-

drated bones dissected from adult specimens, and whole mice were scanned 

with a high-resolution  μ CT (Viva CT40; Scanco Medical). Fetuses and iso-

lated bones were kept in ethanol during image acquisition. Whole mice 

were killed by cervical dislocation before scanning. Data were acquired at 55 

KeV for adults and 45 KeV for fetuses, with 10  μ m cubic resolution. Three-

dimensional reconstructions were generated with the following parameters: 

Sigma, 1.2; Support, 2; Threshold, 160 (spongiosa) or 280 (cortex) for adult 

samples and Threshold, 140 for fetuses. Cortical thickness and tissue mineral 

density were calculated by integration of the value on each transverse section 

of a set of 100 chosen in the midshaft area. Tissue mineral density was de-

rived from the linear attenuation coeffi  cient of thresholded bone through 

precalibration of the apparatus for the acquisition voltage chosen. The bone 

volume fraction of trabecular metaphysis (VOX BV/TV) was measured on 

a set of 80 sections under the growth plate, within the secondary spongiosa. 

Trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separa-

tion (Tb.Sp), and structure model index (SMI) were calculated without as-

suming a constant model, as previously described ( 53 ). SMI estimates the 

plate-rod characteristics of a structure; its value is 0 for an ideal plate, and 3 

for an ideal rod, with intermediate values refl ecting the volume ratio be-

tween rods and plates. 

 In vitro osteoblast and osteoclast diff erentiation and activity assays.  

 Mouse bone marrow stromal cell cultures were used to quantify the total 

number of progenitors: total colony forming units-fi broblasts (CFU-F; 

methylene blue-positive colonies), colony forming units-tissue nonspecifi c 

alkaline phosphatase (CFU-ALP, i.e., putative osteoprogenitors expressing 

ALP), and defi nitive osteoblastic cells with mature osteoblasts and mineral-

ized matrix (CFU-O; ALP and von Kossa – positive, mineralized colonies) 

as previously described ( 54, 55 ). In brief, young (2 – 4 mo of age) male and 

female BSP  � / �   and WT mice were killed by cervical dislocation, and the 

 marrow was fl ushed from dissected femurs in  � -minimum essential medium 

suggestive of effi  cient metaphyseal resorption in mature ( > 5-
mo-old) animals. Collectively, these results suggests that BSP 
is not an absolute limiting factor for increased resorption, 
perhaps caused by some compensatory mechanisms, such 
as overexpression of related proteins (possibly another SIB-
LING) in challenging conditions. Whatever the compensa-
tory mechanism, it contrasts with the cell autonomous defect 
in osteoclast activity of OPN  � / �   mice ( 50 ), and stresses that 
the cellular mechanisms underlying the two phenotypes are 
quite diff erent. 

 In conclusion, BSP  � / �   mice display a reduced body and 
long bone growth, but have a high trabecular bone mass ac-
companied by low bone turnover that is, nonetheless, re-
sponsive to mechanical challenges. Our data thus highlight 
the specifi city of BSP roles in the bone context and further 
confi rm the nonredundancy of function of SIBLING family 
members in skeletal biology. 

  MATERIALS AND METHODS  
 Construction of the  bsp -null targeting vector and chimeric mouse 

production.   Two  bsp  mouse cDNA clones were used to screen a 129Sv/J 

mouse genomic  � DASH2 phage library. 2 overlapping genomic clones, 

spanning  � 19 kb of sequence and the entire  bsp  locus, were isolated and se-

quenced. A short 5 �  arm of  bsp  homology on a 600-bp Sac1 fragment down-

stream of exon I was cloned upstream of the PGKneo cassette in the pPNT 

positive-negative selection vector. A long 3 �  arm of  bsp  homology on a 6-kb 

Kpn fragment was then cloned downstream of the PGKneo cassette, giving 

the fi nal targeting vector. Homologous recombination resulted in the dele-

tion of exons II – III and insertion of the PGKneo cassette in their place 

( Fig. 6 A ). Mouse embryonic stem cells (R1; passage 8) were provided by 

A. Nagy (Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 

Toronto, Ontario, Canada) ( 51 ). Propagation, electroporation, and selection 

of recombinant R1 clones were performed essentially as previously described 

( 52 ). In brief, RI embryonic stem cells were electroporated with the NotI 

linearized targeting vector and were selected by using 200  μ g of active Ge-

neticin (G418; Invitrogen)/ml and 2  μ M ganciclovir (Syntex, Inc.). DNA 

from selected clones was digested with HindIII and analyzed by Southern 

blot hybridization using a HindIII/Xba probe as indicated ( Fig. 6 B ). Posi-

tive clones were used to make chimeric mice, among which a male transmit-

ted the mutation through the germ line after crossing with albino CD1 

outbred females. Off spring were maintained on a 129/CD-1 background 

and genotyped by Southern blotting. Northern blotting of total RNA ex-

tracted from calvariae and long bones of WT and BSP  � / �   mice, with the ribo-

somal protein L32 as a control, confi rmed the total lack of BSP expression in 

knockout mice ( Fig. 6 C ). 

 Care of animals and sampling procedures.   The procedures for the care 

and killing of the animals were in accordance with the University of To-

ronto Animal Care Committee and the European Community standards on 

the care and use of laboratory animals (Minist è re de l ’ Agriculture, France; 

Authorization 04827). The animal experiments were approved by the local 

Animal Care Committees. During acclimatization and experimentation, the 

animals were kept in standard conditions of temperature (23  ±  2 ° C) and 

light-controlled environment (12 h light/12 h dark cycle), and with free ac-

cess to water and pelleted food (UAR rodent diet No.R03 – 25; UAR). 

 Measurement of body and skeletal parameters.   After killing, mouse 

body length was measured from the nose to the tip of the tail. Biphotonic 

densitometry was used to measure BMD (Hologic QDR 1500) and fat 

mass (Piximus; Lunar Corp.). Femur length was measured on isolated bones 

with a 1/50 caliper between the olecranon and the articular condyle of 

the knee. 
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( � MEM) with antibiotics (100  μ g/ml penicillin G [Sigma-Aldrich], 50  μ g/ml 

gentamycin [Sigma-Aldrich], and 300 ng/ml fungizone [Flow Laboratories]) 

containing 15% heat-inactivated FCS. Recovered cells were plated at 0.5 – 1  ×  

10 6  nucleated cells/35-mm dish and cultured in the same medium, which 

was supplemented additionally with ascorbic acid (50  μ g/ml) and  � -glycero-

phosphate (10 mM). Cultures were maintained for 18 – 21 d; fi xing, staining, 

and quantifi cation of colony numbers was carried out as previously de-

scribed ( 54, 55 ). 

 For osteoclast diff erentiation assays, BSP  � / �   and WT female mice were 

killed by cervical dislocation. Spleens were removed and osteoclast precur-

sors were isolated by centrifugation using Lympholyte cell separation media 

(CL 5030; Cedarlane Laboratories) for 20 min at 2,500 rpm. Cells were 

plated in 24-well plates at 25  ×  10 4  cells per well, in diff erentiation medium 

containing 50 ng/ml RANKL and 20 ng/ml MCSF (Peprotech). Bone mar-

row was collected, plated (2  ×  10 6  nucleated cells/cm 2 ), and grown as de-

scribed in the previous paragraph in  � MEM, 15%FCS supplemented with 

10  � 8  M 1, and 25-dihydroxy vitamin D (Sigma-Aldrich). At day 7 of the 

culture, cells were fi xed with 2% paraformaldehyde, washed with PBS, and 

incubated with a mixture of 2 mg/ml Naphtol AS-TR Phosphate (Sigma-

Aldrich) and 5 mg/ml Fast Violet B Salt (Sigma-Aldrich) for 1 h at 40 ° C. 

TRAP-expressing (TRAP + ) cells were counted under a light microscope, 

and cells with  ≥ 3 nuclei were considered as multinucleated osteoclasts. For 

resorption pit assay, equal numbers of mature osteoclasts from spleen cell 

cultures were plated on dentine slices (provided by N. Takahashi, Matsu-

moto Dental University, Nagano, Japan) for 48 h, and resorption pits were 

stained with toluidine blue after cell removal ( 56 ). 

 Real-time RT-PCR.   Total RNA was isolated from midshaft femoral cor-

tical bone (4-mo-old males) or from cell cultures using TRI Reagent ac-

cording to the manufacturer ’ s instructions (Sigma-Aldrich). Samples were 

reverse transcribed, and 50 ng of the cDNA (RNA equivalent) was amplifi ed 

through RT-PCR using the SYBR Green PCR Master Mix (Applied Bio-

systems) on the MyIQ single-color real-time PCR detection system (Bio-

Rad Laboratories). The raw, background-subtracted fl uorescence data 

provided in the MyIQ software were analyzed by the real-time PCR Miner 

program ( 57 ). The resulting PCR effi  ciency and fractional cycle number of 

the threshold ( C  T ) were used for transcript quantifi cation. mRNA expression 

was normalized to L32 mRNA. PCR primer sequences were chosen from 

PrimerBank ( 58 ), unless otherwise stated ( Table III ), and were verifi ed to 

span introns. 

 Statistical analysis.   Phenotypic evaluation (morphometry, histomorphome-

try,  μ CT, densitometry, and microradiography) data, as well as in vitro experi-

ments, were assessed with the Mann-Whitney  U  test or Student ’ s  t  test (stromal 

cell colony counts). RT-PCR results were analyzed by Student ’ s  t  test. Tail sus-

pension experiments were analyzed by two-way ANOVA with post test. 
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