422 research outputs found

    Liturgica

    Get PDF
    n/

    The NuSTAR View of the Seyfert 2 Galaxy NGC 4388

    Get PDF
    We present analysis of NuSTAR X-ray observations in the 3-79 keV energy band of the Seyfert 2 galaxy NGC 4388, taken in 2013. The broadband sensitivity of NuSTAR, covering the Fe Kα\alpha line and Compton reflection hump, enables tight constraints to be placed on reflection features in AGN X-ray spectra, thereby providing insight into the geometry of the circumnuclear material. In this observation, we found the X-ray spectrum of NGC 4388 to be well described by a moderately absorbed power law with non-relativistic reflection. We fit the spectrum with phenomenological reflection models and a physical torus model, and find the source to be absorbed by Compton-thin material (NH=(6.5±0.8)×1023_{H} = (6.5\pm0.8)\times10^{23} cm−2^{-2}) with a very weak Compton reflection hump (R << 0.09) and an exceptionally large Fe Kα\alpha line (EW =368−53+56= 368^{+56}_{-53} eV) for a source with weak or no reflection. Calculations using a thin-shell approximation for the expected Fe Kα\alpha EW indicate that an Fe Kα\alpha line originating from Compton-thin material presents a possible explanation.Comment: 5 pages, 2 figures. Accepted for publication in Ap

    The multi-layer variable absorbers in NGC 1365 revealed by XMM-Newton and <i>NuSTAR</i>

    Get PDF
    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown

    Inferring Compton-thick AGN candidates at z>2 with Chandra using the >8 keV restframe spectral curvature

    Get PDF
    To fully understand cosmic black hole growth we need to constrain the population of heavily obscured active galactic nuclei (AGN) at the peak of cosmic black hole growth (z∼z\sim1-3). Sources with obscuring column densities higher than 1024\mathrm{10^{24}} atoms cm−2\mathrm{cm^{-2}}, called Compton-thick (CT) AGN, can be identified by excess X-ray emission at ∼\sim20-30 keV, called the "Compton hump". We apply the recently developed Spectral Curvature (SC) method to high-redshift AGN (2<z<5) detected with Chandra. This method parametrizes the characteristic "Compton hump" feature cosmologically redshifted into the X-ray band at observed energies <10 keV. We find good agreement in CT AGN found using the SC method and bright sources fit using their full spectrum with X-ray spectroscopy. In the Chandra deep field south, we measure a CT fraction of 17−11+19%\mathrm{17^{+19}_{-11}\%} (3/17) for sources with observed luminosity >5×1043\mathrm{>5\times 10^{43}} erg s−1\mathrm{s^{-1}}. In the Cosmological evolution survey (COSMOS), we find an observed CT fraction of 15−3+4%\mathrm{15^{+4}_{-3}\%} (40/272) or 32±11%\mathrm{32\pm11 \%} when corrected for the survey sensitivity. When comparing to low redshift AGN with similar X-ray luminosities, our results imply the CT AGN fraction is consistent with having no redshift evolution. Finally, we provide SC equations that can be used to find high-redshift CT AGN (z>1) for current (XMM-Newton) and future (eROSITA and ATHENA) X-ray missions.Comment: 10 pages, 8 figure

    Investigating the evolution of the dual AGN system ESO~509-IG066

    Get PDF
    We analyze the evolution of the dual AGN in ESO 509-IG066, a galaxy pair located at z=0.034 whose nuclei are separated by 11 kpc. Previous observations with XMM-Newton on this dual AGN found evidence for two moderately obscured (NH∼1022N_H\sim10^{22} cm−2^{-2}) X-ray luminous (LX∼1043L_X\sim10^{43} erg/s) nuclear sources. We present an analysis of subsequent Chandra, NuSTAR and Swift/XRT observations that show one source has dropped in flux by a factor of 10 between 2004 and 2011, which could be explained by either an increase in the absorbing column or an intrinsic fading of the central engine possibly due to a decrease in mass accretion. Both of these scenarios are predicted by galaxy merger simulations. The source which has dropped in flux is not detected by NuSTAR, which argues against absorption, unless it is extreme. However, new Keck/LRIS optical spectroscopy reveals a previously unreported broad H-alpha line which is highly unlikely to be visible under the extreme absorption scenario. We therefore conclude that the black hole in this nucleus has undergone a dramatic drop in accretion rate. From AO-assisted near-infrared integral-field spectroscopy of the other nucleus, we find evidence that the galaxy merger is having a direct effect on the kinematics of the gas close to the nucleus of the galaxy, providing a direct observational link between the galaxy merger and the mass accretion rate on to the black hole.Comment: Accepted for publication in Ap

    The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick AGN

    Get PDF
    The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index Γ=2.2−2.4\Gamma = 2.2-2.4, the torus has an equatorial column density of NH=(6−10)×1024N_{\rm H} = (6-10)\times10^{24}cm−2^{-2} and the intrinsic AGN 2−102-10 keV luminosity is (2.3−5.1)×1042(2.3-5.1)\times 10^{42} erg/s. These values place Circinus along the same relations as unobscured AGN in accretion rate-vs-Γ\Gamma and LXL_X-vs-LIRL_{IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short time-scale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the the spectral fitting results.Comment: Accepted for publication in Ap

    Broadband Observations of the Compton-thick Nucleus of NGC 3393

    Get PDF
    We present new NuSTAR and Chandra observations of NGC 3393, a galaxy reported to host the smallest separation dual AGN resolved in the X-rays. While past results suggested a 150 pc separation dual AGN, three times deeper Chandra imaging, combined with adaptive optics and radio imaging suggest a single, heavily obscured, radio-bright AGN. Using VLA and VLBA data, we find an AGN with a two-sided jet rather than a dual AGN and that the hard X-ray, UV, optical, NIR, and radio emission are all from a single point source with a radius <0.2". We find that the previously reported dual AGN is most likely a spurious detection resulting from the low number of X-ray counts (<160) at 6-7 keV and Gaussian smoothing of the data on scales much smaller than the PSF (0.25" vs. 0.80" FWHM). We show that statistical noise in a single Chandra PSF generates spurious dual peaks of the same separation (0.55±\pm0.07" vs. 0.6") and flux ratio (39±\pm9% vs. 32% of counts) as the purported dual AGN. With NuSTAR, we measure a Compton-thick source (NH=2.2±0.4×10242.2\pm0.4\times10^{24} cm−2^{-2}) with a large torus half-opening angle, {\theta}=79 which we postulate results from feedback from strong radio jets. This AGN shows a 2-10 keV intrinsic to observed flux ratio of 150. Using simulations, we find that even the deepest Chandra observations would severely underestimate the intrinsic luminosity of NGC 3393 above z>0.2, but would detect an unobscured AGN of this luminosity out to high redshift (z=5).Comment: Accepted for publication in ApJ. 15 Figures and 4 table

    The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study

    Get PDF
    In this paper we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy Markarian 3 carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM-Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N_H~0.8-1.1×\times1024^{24} cm−2^{-2}). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle ~66 degrees and is seen at a grazing angle through its upper rim (inclination angle ~70 degrees). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17±\pm5) and individual column density, [~(4.9±\pm1.5)×\times1022^{22} cm−2^{-2}]. The comparison of IR and X-ray spectroscopic results with state-of-the art "torus" models suggests that at least two thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterised by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 5 table

    X-ray bolometric corrections for Compton-thick active galactic nuclei

    Get PDF
    We present X-ray bolometric correction factors, κBol\kappa_{Bol} (≡LBol/LX\equiv L_{Bol}/L_X), for Compton-thick (CT) active galactic nuclei (AGN) with the aim of testing AGN torus models, probing orientation effects, and estimating the bolometric output of the most obscured AGN. We adopt bolometric luminosities, LBolL_{Bol}, from literature infrared (IR) torus modeling and compile published intrinsic 2--10 keV X-ray luminosities, LXL_{X}, from X-ray torus modeling of NuSTAR data. Our sample consists of 10 local CT AGN where both of these estimates are available. We test for systematic differences in κBol\kappa_{Bol} values produced when using two widely used IR torus models and two widely used X-ray torus models, finding consistency within the uncertainties. We find that the mean κBol\kappa_{Bol} of our sample in the range LBol≈1042−1045L_{Bol}\approx10^{42}-10^{45} erg/s is log10κBol=1.44±0.12_{10}\kappa_{Bol}=1.44\pm0.12 with an intrinsic scatter of ∼0.2\sim0.2 dex, and that our derived κBol\kappa_{Bol} values are consistent with previously established relationships between κBol\kappa_{Bol} and LBolL_{Bol} and κBol\kappa_{Bol} and Eddington ratio. We investigate if κBol\kappa_{Bol} is dependent on NHN_H by comparing our results on CT AGN to published results on less-obscured AGN, finding no significant dependence. Since many of our sample are megamaser AGN, known to be viewed edge-on, and furthermore under the assumptions of AGN unification whereby unobscured AGN are viewed face-on, our result implies that the X-ray emitting corona is not strongly anisotropic. Finally, we present κBol\kappa_{Bol} values for CT AGN identified in X-ray surveys as a function of their observed LXL_X, where an estimate of their intrinsic LXL_{X} is not available, and redshift, useful for estimating the bolometric output of the most obscured AGN across cosmic time.Comment: Accepted for publication in Ap
    • …
    corecore