42 research outputs found

    Lateral dimerization is required for the homophilic binding activity of C-cadherin

    Get PDF
    Regulation of cadherin-mediated adhesion can occur rapidly at the cell surface. To understand the mechanism underlying cadherin regulation, it is essential to elucidate the hemophilic binding mechanism that underlies all cadherin-mediated functions. Therefore, we have investigated the structural and functional properties of the extracellular segment of Xenopus C-cadherin using a purified, recombinant protein (CEC 1-5). CEC 1-5 supported adhesion of CHO cells expressing C-cadherin. The extracellular segment was also capable of mediating aggregation of microspheres. Chemical cross-linking and gel filtration revealed that CEC 1-5 formed dimers in the presence as well as absence of calcium. Analysis of the functional activity of purified dimers and monomers demonstrated that dimers retained substantially greater homophilic binding activity than monomers. These results demonstrate that lateral dimerization is necessary for hemophilic binding between cadherin extracellular segments and suggest multiple potential mechanisms for the regulation of cadherin activity

    Intrinsic dynamic behavior of fascin in filopodia

    Get PDF
    Author Posting. Ā© American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 3928-3940, doi:10.1091/mbc.E07-04-0346.Recent studies showed that the actin cross-linking protein, fascin, undergoes rapid cycling between filopodial filaments. Here, we used an experimental and computational approach to dissect features of fascin exchange and incorporation in filopodia. Using expression of phosphomimetic fascin mutants, we determined that fascin in the phosphorylated state is primarily freely diffusing, whereas actin bundling in filopodia is accomplished by fascin dephosphorylated at serine 39. Fluorescence recovery after photobleaching analysis revealed that fascin rapidly dissociates from filopodial filaments with a kinetic off-rate of 0.12 sā€“1 and that it undergoes diffusion at moderate rates with a coefficient of 6 Āµm2sā€“1. This kinetic off-rate was recapitulated in vitro, indicating that dynamic behavior is intrinsic to the fascin cross-linker. A computational reactionā€“diffusion model showed that reversible cross-linking is required for the delivery of fascin to growing filopodial tips at sufficient rates. Analysis of fascin bundling indicated that filopodia are semiordered bundles with one bound fascin per 25ā€“60 actin monomers.This work was supported by a National Institutes of Health F31National Research Service Award NS055565-01 (to Y.S.A.), Northwestern University Pulmonary and Critical Care Division T32 (to T.E.S.), and National Institutes of Health grant GM-70898 (to G.G.B.)

    Dynamic stabilization of actin filaments

    No full text
    We report here that actin filaments in vitro exist in two populations with significantly different shrinkage rates. Newly polymerized filaments shrink rapidly, primarily from barbed ends, at 1.8/s, but as they age they switch to a stable state that shrinks slowly, primarily from pointed ends, at ā‰ˆ0.1/s. This dynamic filament stabilization runs opposite to the classical prediction that actin filaments become more unstable with age as they hydrolyze their bound ATP and release phosphate. Upon cofilin treatment, aged filaments revert to a dynamic state that shows accelerated shrinkage from both ends at a combined rate of 5.9/s. In light of recent electron microscopy studies [Orlova A, et al. (2004) Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization. Proc Natl Acad Sci USA 101:17664ā€“17668], we propose that dynamic stabilization arises from rearrangement of the filament structure from a relatively disordered state immediately after polymerization to the canonical Holmes helix, a change that is reversed by cofilin binding. Our results suggest that plasticity in the internal structure of the actin filament may play a fundamental role in regulating actin dynamics and may help cells build actin assemblies with vastly different turnover rates

    Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography

    No full text
    Cellular adhesion by classical cadherins depends critically on the exact proteolytic removal of their N-terminal prosequences. In this combined solution NMR and X-ray crystallographic study, the consequences of propeptide cleavage of an epithelial cadherin construct (domains 1 and 2) were followed at atomic level. At low protein concentration, the N-terminal processing induces docking of the tryptophan-2 side-chain into a binding pocket on the same molecule. At high concentration, cleavage induces dimerization (K(D)=0.72 mM, k(off)=0.7 s(āˆ’1)) and concomitant intermolecular exchange of the Ī²A-strands and the tryptophan-2 side-chains. Thus, the cleavage represents the switch from a nonadhesive to the functional form of cadherin
    corecore