10 research outputs found

    Charge effects on the behavior of CTAB adsorbed on Au(111) electrodes in aqueous solutions

    Get PDF
    The behavior of adsorbed CTAB on Au(111) electrodes has been studied using electrochemical and FTIR experiments in different aqueous solutions. The results show that the adsorbed layer is stable in acidic solutions in the whole potential range of study. The observed electrochemical and FTIR behavior is compatible with the formation of a membrane of CTA+ on the electrode surface with the polar amino groups in contact with the surface. When the electrode charge is negative, the polar groups are attracted to the surface, so that the capacitance of the electrode is smaller than that recorded for the unmodified Au(111) electrode. As the charge becomes positive, the membrane detaches from the surface and water molecules permeate through it, changing the capacitance of the electrode and giving rise to characteristic peaks in the voltammetric profile. At potentials higher than these peaks, the behavior of the electrode is comparable to that observed for the unmodified electrode. The stability of the membrane is facilitated by the incorporation of anions of the supporting electrolyte. Those anions remain on the membrane even when the electrode is transferred to a different solution, as the electrochemical behavior shows.Financial support from Ministerio de Ciencia e Innovación (Project PID2019-105653GB-100 ) and Generalitat Valenciana (Project PROMETEO/2020/063 ) is acknowledged

    An Aza-Fused pi-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.html"[EN] In order to produce hydrogen peroxide in small-scale electrochemical plants, selective catalysts for the oxygen reduction reaction (ORR) toward the desired species are required. Here, we report about the synthesis, characterization, ORR electrochemical behavior, and reaction mechanism of an aza-fused pi-conjugated microporous polymer, which presents high selectivity toward hydrogen peroxide. It was synthesized by polycondensation of 1,2,4,5-benzenetetramine tetrahydrochloride and triquinoyl octahydrate. A cobalt-modified version of the material was also prepared by a simple postsynthesis treatment with a Co(II) salt. The characterization of the material is consistent with the formation of a conductive robust porous covalent laminar polyaza structure. The ORR properties of these catalysts were investigated using rotating disk and rotating disk ring arrangements. The results indicate that hydrogen peroxide is almost exclusively produced at very low overpotentials on these materials. Density functional theory calculations provide key elements to understand the reaction mechanism. It is found that, at the relevant potential for the reaction, half of the nitrogen atoms of the material would be hydrogenated. This hydrogenation process would destabilize some carbon atoms in the lattice and would provide segregated charge. On the destabilized carbon atoms, molecular oxygen would be chemisorbed with the aid of charge transferred from the hydrogenated nitrogen atoms and solvation effects. Due to the low destabilization of the carbon sites, the resulting molecular oxygen chemisorbed state, which would have the characteristics of a superoxide species, would be only slightly stable, promoting the formation of hydrogen peroxide.This work has been financially supported by the MCINN-FEDER (projects CTQ2016-76221-P, MAT2013-46753-C2-1-P, and MAT2014-52305-P) and Generalitat Valenciana (project PROMETEO/2014/013).Briega-Martos, V.; Ferre Vilaplana, A.; De La Peña, A.; Segura, J.; Zamora, F.; Feliu, J.; Herrero, E. (2017). An Aza-Fused pi-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis. 7(2):1015-1024. https://doi.org/10.1021/acscatal.6b03043S101510247

    Against “electrochemical mainstreams”

    No full text

    An Aza-Fused π‑Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide

    No full text
    In order to produce hydrogen peroxide in small-scale electrochemical plants, selective catalysts for the oxygen reduction reaction (ORR) toward the desired species are required. Here, we report about the synthesis, characterization, ORR electrochemical behavior, and reaction mechanism of an aza-fused π-conjugated microporous polymer, which presents high selectivity toward hydrogen peroxide. It was synthesized by polycondensation of 1,2,4,5-benzenetetramine tetrahydrochloride and triquinoyl octahydrate. A cobalt-modified version of the material was also prepared by a simple postsynthesis treatment with a Co­(II) salt. The characterization of the material is consistent with the formation of a conductive robust porous covalent laminar polyaza structure. The ORR properties of these catalysts were investigated using rotating disk and rotating disk–ring arrangements. The results indicate that hydrogen peroxide is almost exclusively produced at very low overpotentials on these materials. Density functional theory calculations provide key elements to understand the reaction mechanism. It is found that, at the relevant potential for the reaction, half of the nitrogen atoms of the material would be hydrogenated. This hydrogenation process would destabilize some carbon atoms in the lattice and would provide segregated charge. On the destabilized carbon atoms, molecular oxygen would be chemisorbed with the aid of charge transferred from the hydrogenated nitrogen atoms and solvation effects. Due to the low destabilization of the carbon sites, the resulting molecular oxygen chemisorbed state, which would have the characteristics of a superoxide species, would be only slightly stable, promoting the formation of hydrogen peroxide
    corecore