65 research outputs found

    Variability in the functional composition of coral reef fish communities on submerged and emergent reefs in the central Great Barrier Reef, Australia

    Get PDF
    On coral reefs, depth and gradients related to depth (e.g. light and wave exposure) influence the composition of fish communities. However, most studies focus only on emergent reefs that break the sea surface in shallow waters (<10 m). On the Great Barrier Reef (GBR), submerged reefs (reefs that do not break the sea surface) occupy an area equivalent to all emergent reefs. However, submerged reefs have received comparatively little research attention, and fish communities associated with submerged reefs remain poorly quantified. Here, we quantify fish assemblages at each of three depths (10, 20 and 30 m) on eight submerged reefs (four mid-shelf and four outer-shelf) and two nearby emergent reefs in the central GBR where reef habitat extends from 0-~25 m depth. We examine how total fish abundance, the abundance of 13 functional groups, and the functional composition of fish communities varies among depths, reef types (submerged versus emergent reefs), and shelf position (mid-shelf versus outer-shelf). Overall fish abundance decreased sevenfold with depth, but declined less steeply (twofold) on outer-shelf submerged reefs than on both mid-shelf submerged reefs and emergent reefs. The functional composition of the fish assemblage also varied significantly among depths and reef types. Turnover in the functional composition of the fish community was also steeper on the mid-shelf, suggesting that shallow-affiliated groups extend further in deeper water on the outer-shelf. Ten of the 13 functional groups were more strongly associated with the shallowest depths (the upper reef slope of emergent reefs or the 'crests' of submerged reefs), two groups (soft coral/sponge feeders and mesopredators) were more abundant at the deepest sites. Our results confirm that submerged reefs in the central GBR support a wide range of coral reef fishes, and are an important component of the GBR ecosystem

    Interferometric Follow-Up of WISE Hyper-Luminous Hot, Dust-Obscured Galaxies

    Get PDF
    WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands (3.4 μ3.4\, \mum and 4.6 μ4.6\, \mum) but are bright in the two redder passbands of WISE (12 μ12\, \mum and 22 μ22\, \mum). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the CARMA and SMA interferometer arrays at submm/mm wavelengths. We report continuum detections at ∼\sim 1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1-2 arcsec and are consistent with single point sources. We estimate the masses of cold dust are 2.0×108M⊙\times 10^{8} M_{\odot} for W0149+2350 and 3.9×108M⊙\times 10^{8} M_{\odot} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ\sigma upper limits to the molecular gas masses traced by CO, which are 3.3×1010M⊙\times 10^{10} M_{\odot} and 2.3×1010M⊙\times 10^{10} M_{\odot} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.Comment: 13 pages, 3 figures. ApJ in pres

    A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Get PDF
    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 ≾ z ≾ 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg^(–2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR ≳ 10^(13)-10^(14) L_☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy

    Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    Get PDF
    We present Spitzer 3.6 and 4.5 μ\mum photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 μ\mum ∼\sim 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf candidates, suggesting that the 7 companion candidates are not physically associated. In fact, only one of these 7 Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this there is no evidence for any widely separated (>> 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of ∼\sim 7.33 ×105\times 10^5 objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 μ\mum photometry, along with positionally matched BB and RR photometry from USNO-B; JJ, HH, and KsK_s photometry from 2MASS; and W1W1, W2W2, W3W3, and W4W4 photometry from the WISE all-sky catalog

    Submillimeter Follow-up of WISE-Selected Hyperluminous Galaxies

    Get PDF
    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of WISE-selected, hyperluminous galaxies, so called W1W2-dropout galaxies. This is a rare (~ 1000 all-sky) population of galaxies at high redshift (peaks at z=2-3), that are faint or undetected by WISE at 3.4 and 4.6 um, yet are clearly detected at 12 and 22 um. The optical spectra of most of these galaxies show significant AGN activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350 to 850 um, with 9 detections; and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 um, as well as optical spectra of 12 targets are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submm ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10^{13} Lsun. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the Universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.Comment: Will be Published on Sep 1, 2012 by Ap

    WISE Discovery of Hyper Luminous Galaxies at z = 2-4 and Their Implications for Galaxy and AGN Evolution

    Get PDF
    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at z=2-4, and with IR luminosity > 10^(13)L_☉, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies

    The First Hyper-luminous Infrared Galaxy Discovered by WISE

    Get PDF
    We report the discovery by the Wide-field Infrared Survey Explorer (WISE) of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 μm and well detected at 12 or 22 μm). The WISE data and a 350 μm detection give a minimum bolometric luminosity of 3.7 × 10^(13) L_☉, with ~10^(14) L_☉ plausible. Follow-up images reveal four nearby sources: a QSO and two Lyman break galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 M_☉ yr^(–1), accounting for ≲ 10% of the bolometric luminosity. Strong 22 μm emission relative to 350 μm implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10 times above the far-infrared/radio correlation, indicating an active galactic nucleus (AGN) is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M BH-bulge mass relation, the implied Eddington ratio is ≳ 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation

    Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Get PDF
    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Novel study designs to investigate the placebo response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigating the size and mechanisms of the placebo response in clinical trials have relied on experimental procedures that simulate the double-blind randomized placebo-controlled design. However, as the conventional design is thought to elucidate drug rather than placebo actions, different methodological procedures are needed for the placebo response.</p> <p>Methods</p> <p>We reviewed the respective literature for trials designs that may be used to elucidate the size of the placebo response and the mechanisms associated with it.</p> <p>Results</p> <p>In general, this can be done by either manipulation the information provided to the subjects, or by manipulation the timing of the drug applied. Two examples of each strategy are discussed: the "balanced placebo design" (BDP) and the "balanced cross-over design" (BCD) and their variants are based on false information, while the "hidden treatment" (HT) and the ""delayed response test" (DRT) are based on manipulating the time of drug action. Since most such approaches include deception or incomplete information of the subjects they are suitable for patient only with authorized deception.</p> <p>Conclusion</p> <p>Both manipulating the information provided to subjects (BDP, DCD) or manipulating the timing of drug application (HT, DRT) allows overcoming some of the restrictions of conventional drug trials in the assessment of the placebo response, but they are feasible mostly in healthy subjects for ethical reasons.</p
    • …
    corecore