143 research outputs found

    Climate change winner in the deep sea? Predicting the impacts of climate change on the distribution of the glass sponge Vazella pourtalesii

    Get PDF
    Shallow-water sponges are often cited as being ‘climate change winners’ due to their resiliency against climate change effects compared to other benthic taxa. However, little is known of the impacts of climate change on deep-water sponges. The deep-water glass sponge Vazella pourtalesii is distributed off eastern North America, forming dense sponge grounds with enhanced biodiversity on the Scotian Shelf off Nova Scotia, Canada. While the strong natural environmental variability that characterizes these sponge grounds suggests this species is resilient to a changing environment, its physiological limitations remain unknown, and the impact of more persistent anthropogenic climate change on its distribution has never been assessed. We used Random Forest and generalized additive models to project the distribution of V. pourtalesii in the northwest Atlantic using environmental conditions simulated under moderate and worst-case CO2 emission scenarios. Under future (2046-2065) climate change, the suitable habitat of V. pourtalesii will increase up to 4 times its present-day size and shift into deeper waters and higher latitudes, particularly in its northern range where ocean warming will serve to improve the habitat surrounding this originally sub-tropical species. However, not all areas projected as suitable habitat in the future will realistically be populated, and the reduced likelihood of occurrence in its core habitat on the Scotian Shelf suggests that the existing Vazella sponge grounds may be negatively impacted. An effective monitoring programme will require tracking changes in the density and distribution of V. pourtalesii at the margins between core habitat and where losses and gains were projected.publishedVersio

    Climate change winner in the deep sea? Predicting the impacts of climate change on the distribution of the glass sponge Vazella pourtalesii

    Get PDF
    Shallow-water sponges are often cited as being ‘climate change winners’ due to their resiliency against climate change effects compared to other benthic taxa. However, little is known of the impacts of climate change on deep-water sponges. The deep-water glass sponge Vazella pourtalesii is distributed off eastern North America, forming dense sponge grounds with enhanced biodiversity on the Scotian Shelf off Nova Scotia, Canada. While the strong natural environmental variability that characterizes these sponge grounds suggests this species is resilient to a changing environment, its physiological limitations remain unknown, and the impact of more persistent anthropogenic climate change on its distribution has never been assessed. We used Random Forest and generalized additive models to project the distribution of V. pourtalesii in the northwest Atlantic using environmental conditions simulated under moderate and worst-case CO2 emission scenarios. Under future (2046-2065) climate change, the suitable habitat of V. pourtalesii will increase up to 4 times its present-day size and shift into deeper waters and higher latitudes, particularly in its northern range where ocean warming will serve to improve the habitat surrounding this originally sub-tropical species. However, not all areas projected as suitable habitat in the future will realistically be populated, and the reduced likelihood of occurrence in its core habitat on the Scotian Shelf suggests that the existing Vazella sponge grounds may be negatively impacted. An effective monitoring programme will require tracking changes in the density and distribution of V. pourtalesii at the margins between core habitat and where losses and gains were projected.publishedVersio

    Early Cortical Thickness Change after Mild Traumatic Brain Injury following Motor Vehicle Collision

    Get PDF
    In a motor vehicle collision (MVC), survivors often receive mild traumatic brain injuries (mTBI). Although there have been some reports of early white matter changes after an mTBI, much less is known about early cortical structural changes. To investigate early cortical changes within a few days after an MVC, we compared cortical thickness of mTBI survivors with non-mTBI survivors, then reexamined cortical thickness in the same survivors 3 months later. MVC survivors were categorized as mTBI or non-mTBI based on concussive symptoms documented in emergency departments (EDs). Cortical thickness was measured from MRI images using FreeSurfer within a few days and again at 3 months after MVC. Post-traumatic stress symptoms and physical conditions were also assessed. Compared with the non-mTBI group (n=23), the mTBI group (n=21) had thicker cortex in the left rostral middle frontal (rMFG) and right precuneus gyri, but thinner cortex in the left posterior middle temporal gyrus at 7.2±3.1 days after MVC. After 3 months, cortical thickness had decreased in left rMFG in the mTBI group but not in the non-mTBI group. The cortical thickness of the right precuneus region in the initial scans was positively correlated with acute traumatic stress symptoms for all survivors and with the number of reduced activity days for mTBI survivors who completed the follow-up. The preliminary results suggest that alterations in cortical thickness may occur at an early stage of mTBI and that frontal cortex structure may change dynamically over the initial 3 months after mTBI.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140167/1/neu.2014.3492.pd

    Early Changes in Cortical Emotion Processing Circuits after Mild Traumatic Brain Injury from Motor Vehicle Collision

    Get PDF
    Mild traumatic brain injury (mTBI) patients frequently experience emotion dysregulation symptoms, including post-traumatic stress. Although mTBI likely affects cortical activation and structure, resulting in cognitive symptoms after mTBI, early effects of mTBI on cortical emotion processing circuits have rarely been examined. To assess early mTBI effects on cortical functional and structural components of emotion processing, we assessed cortical activation to fearful faces within the first 2 weeks after motor vehicle collision (MVC) in survivors who did and did not experience mTBI. We also examined the thicknesses of cortical regions with altered activation. MVC survivors with mTBI (n = 21) had significantly less activation in left superior parietal gyrus (SPG) (−5.9, −81.8, 33.8; p = 10−3.623), left medial orbitofrontal gyrus (mOFG) (−4.7, 36.1, −19.3; p = 10−3.231), and left and right lateral orbitofrontal gyri (lOFG) (left: −16.0, 41.4, −16.6; p = 10−2.573; right: 18.7, 22.7, −17.7; p = 10−2.764) than MVC survivors without mTBI (n = 23). SPG activation in mTBI survivors within 2 weeks after MVC was negatively correlated with subsequent post-traumatic stress symptom severity at 3 months (r = −0.68, p = 0.03). Finally, the SPG region was thinner in the mTBI survivors than in the non-mTBI survivors (F = 11.07, p = 0.002). These results suggest that early differences in activation and structure in cortical emotion processing circuits in trauma survivors who sustain mTBI may contribute to the development of emotion-related symptoms

    Money and mental wellbeing : a longitudinal study of medium-sized lottery wins

    Get PDF
    One of the famous questions in social science is whether money makes people happy. We offer new evidence by using longitudinal data on a random sample of Britons who receive medium-sized lottery wins of between £1000 and £120,000 (that is, up to approximately US$ 200,000). When compared to two control groups – one with no wins and the other with small wins – these individuals go on eventually to exhibit significantly better psychological health. Two years after a lottery win, the average measured improvement in mental wellbeing is 1.4 GHQ points

    Preliminary Study of Acute Changes in Emotion Processing in Trauma Survivors with PTSD Symptoms

    Get PDF
    Accumulating evidence suggests traumatic experience can rapidly alter brain activation associated with emotion processing. However, little is known about acute changes in emotion neurocircuits that underlie PTSD symptom development. To examine acute alterations in emotion circuit activation and structure that may be linked to PTSD symptoms, thirty-eight subjects performed a task of appraisal of emotional faces as their brains were functionally and structurally studied with MRI at both two weeks and three months after motor vehicle collision (MVC). As determined by symptoms reported in the PTSD Checklist at three months, sixteen survivors developed probable PTSD, whereas the remaining 22 did not meet criteria for PTSD diagnosis (non-PTSD). The probable PTSD group had greater activation than the non-PTSD group in dorsal and ventral medial prefrontal cortex (dmPFC and vmPFC) while appraising fearful faces within two weeks after MVC and in left insular cortex (IC) three months after MVC. dmPFC activation at two weeks significantly positively correlated with PTSD symptom severity at two weeks (R = 0.462, P = 0.006) and three months (R = 0.418, p = 0.012). Changes over time in dmPFC activation and in PTSD symptom severity were also significantly positively correlated in the probable PTSD group (R = 0.641, P = 0.018). A significant time by group interaction was found for volume changes in left superior frontal gyrus (SFG, F = 6.048, p = 0.019) that partially overlapped dmPFC active region. Between two weeks and three months, left SFG volume decreased in probable PTSD survivors. These findings identify alterations in frontal cortical activity and structure during the early post-trauma period that appear to be associated with development of PTSD symptoms

    Early Cortical Thickness Change after Mild Traumatic Brain Injury following Motor Vehicle Collision

    Get PDF
    In a motor vehicle collision (MVC), survivors often receive mild traumatic brain injuries (mTBI). Although there have been some reports of early white matter changes after an mTBI, much less is known about early cortical structural changes. To investigate early cortical changes within a few days after an MVC, we compared cortical thickness of mTBI survivors with non-mTBI survivors, then reexamined cortical thickness in the same survivors 3 months later. MVC survivors were categorized as mTBI or non-mTBI based on concussive symptoms documented in emergency departments (EDs). Cortical thickness was measured from MRI images using FreeSurfer within a few days and again at 3 months after MVC. Post-traumatic stress symptoms and physical conditions were also assessed. Compared with the non-mTBI group (n=23), the mTBI group (n=21) had thicker cortex in the left rostral middle frontal (rMFG) and right precuneus gyri, but thinner cortex in the left posterior middle temporal gyrus at 7.2±3.1 days after MVC. After 3 months, cortical thickness had decreased in left rMFG in the mTBI group but not in the non-mTBI group. The cortical thickness of the right precuneus region in the initial scans was positively correlated with acute traumatic stress symptoms for all survivors and with the number of reduced activity days for mTBI survivors who completed the follow-up. The preliminary results suggest that alterations in cortical thickness may occur at an early stage of mTBI and that frontal cortex structure may change dynamically over the initial 3 months after mTBI

    Partial Volume Correction in Quantitative Amyloid Imaging.

    Get PDF
    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition

    Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease

    Get PDF
    Introduction: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. Methods: FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. Results: Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. Discussion: Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure
    • …
    corecore