42 research outputs found

    Combating Cholera [version 1; peer review: 2 approved]

    Get PDF
    Cholera infections caused by the gamma-proteobacterium Vibrio cholerae have ravaged human populations for centuries, and cholera pandemics have afflicted every corner of the globe. Fortunately, interventions such as oral rehydration therapy, antibiotics/antimicrobials, and vaccines have saved countless people afflicted with cholera, and new interventions such as probiotics and phage therapy are being developed as promising approaches to treat even more cholera infections. Although current therapies are mostly effective and can reduce disease transmission, cholera outbreaks remain deadly, as was seen during recent outbreaks in Haiti, Ethiopia, and Yemen. This is due to significant underlying political and socioeconomic complications, including shortages of vaccines and clean food and water and a lack of health surveillance. In this review, we highlight the strengths and weaknesses of current cholera therapies, discuss emerging technologies, and argue that a multi-pronged, flexible approach is needed to continue to reduce the worldwide burden of cholera

    Weighing the Association Between BMI Change and Suicide Mortality

    Get PDF
    OBJECTIVE: Suicide rates continue to rise, necessitating the identification of risk factors. Obesity and suicide mortality rates have been examined, but associations among weight change, death by suicide, and depression among adults in the United States remain unclear. METHODS: Data from 387 people who died by suicide in 2000-2015 with a recorded body mass index (BMI) in the first and second 6 months preceding their death ( index date ) were extracted from the Mental Health Research Network. Each person was matched with five people in a control group (comprising individuals who did not die by suicide) by age, sex, index year, and health care site (N=1,935). RESULTS: People who died by suicide were predominantly male (71%), White (69%), and middle aged (mean age=57 years) and had a depression diagnosis (55%) and chronic health issues (57%) (corresponding results for the control group: 71% male, 66% White, 14% with depression diagnosis, and 43% with chronic health issues; mean age=56 years). Change in BMI within the year before the index date statistically significantly differed between those who died by suicide (mean change=-0.72±2.42 kg/m(2)) and the control group (mean change=0.06±4.99 kg/m(2)) (p\u3c0.001, Cohen\u27s d=0.17). A one-unit BMI decrease was associated with increased risk for suicide after adjustment for demographic characteristics, mental disorders, and Charlson comorbidity score (adjusted odds ratio=1.11, 95% confidence interval=1.05-1.18, p\u3c0.001). For those without depression, a BMI change was significantly associated with suicide (p\u3c0.001). CONCLUSIONS: An increased suicide mortality rate was associated with weight loss in the year before a suicide after analyses accounted for general and mental health indicators

    Using BOX-PCR to exclude a clonal outbreak of melioidosis

    Get PDF
    Background Although melioidosis in endemic regions is usually caused by a diverse range of Burkholderia pseudomallei strains, clonal outbreaks from contaminated potable water have been described. Furthermore B. pseudomallei is classified as a CDC Group B bioterrorism agent. Ribotyping, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) have been used to identify genetically related B. pseudomallei isolates, but they are time consuming and technically challenging for many laboratories. Methods We have adapted repetitive sequence typing using a BOX A1R primer for typing B. pseudomallei and compared BOX-PCR fingerprinting results on a wide range of well-characterized B. pseudomallei isolates with MLST and PFGE performed on the same isolates. Results BOX-PCR typing compared favourably with MLST and PFGE performed on the same isolates, both discriminating between the majority of multilocus sequence types and showing relatedness between epidemiologically linked isolates from various outbreak clusters. Conclusion Our results suggest that BOX-PCR can be used to exclude a clonal outbreak of melioidosis within 10 hours of receiving the bacterial strains

    Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X

    Get PDF
    The prevalence of obesity (body mass index (BMI) ≥30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Replication cycle timing determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system.

    No full text
    Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID, is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced inhibition of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer replication cycle like T5 are sensitive to AvcID-mediated protection while those with a shorter replication cycle like T7 are resistant

    Glycans Related to the CA19-9 Antigen Are Increased in Distinct Subsets of Pancreatic Cancers and Improve Diagnostic Accuracy Over CA19-9Summary

    Get PDF
    Background & Aims: The cancer antigen 19-9 (CA19-9) is the current best biomarker for pancreatic cancer, but it is not increased in approximately 25% of pancreatic cancer patients at a cut-off value that provides a 25% false-positive rate. We hypothesized that antigens related to the CA19-9 antigen, which is a glycan called sialyl-Lewis A (sLeA), are increased in distinct subsets of pancreatic cancers. Methods: We profiled the levels of multiple glycans and mucin glycoforms in plasma from 200 subjects with either pancreatic cancer or benign pancreatic disease, and we validated selected findings in additional cohorts of 116 and 100 subjects, the latter run with the investigators blinded to diagnoses and including cancers that exclusively were early stage. Results: We found significant increases in 2 glycans: an isomer of sLeA called sialyl-Lewis X, present both in sulfated and nonsulfated forms, and the sialylated form of a marker for pluripotent stem cells, type 1 N-acetyl-lactosamine. The glycans performed as well as sLeA as individual markers and were increased in distinct groups of patients, resulting in a 3-marker panel that significantly improved upon any individual biomarker. The panel showed 85% sensitivity and 90% specificity in the combined discovery and validation cohorts, relative to 54% sensitivity and 86% specificity for sLeA; and it showed 80% sensitivity and 84% specificity in the independent test cohort, as opposed to 66% sensitivity and 72% specificity for sLeA. Conclusions: Glycans related to sLeA are increased in distinct subsets of pancreatic cancers and yield improved diagnostic accuracy compared with CA19-9. Keywords: Biomarkers, Sialyl-Lewis A, Antibody Arrays, Lectin
    corecore