25 research outputs found

    Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths

    Get PDF
    In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. We show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layers adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 × 1017 cm−3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity

    Identifying Dominant Recombination Mechanisms in Perovskite Solar Cells by Measuring the Transient Ideality Factor

    Get PDF
    The light ideality factor determined by measuring the open-circuit voltage (V) as a function of light intensity is often used to identify the dominant recombination mechanism in solar cells. Applying this “Suns-V” technique to perovskite cells is problematic since the V evolves with time in a way that depends on the previously applied bias (V), bias light intensity, device architecture and processing route. Here, we show that the dominant recombination mechanism in two structurally similar CH3NH3PbI3 devices containing either mesoporous Al2O3 or TiO2 layers can be identified from the signature of the transient ideality factor following application of a forward bias, V, to the device in the dark. The transient ideality factor is measured by monitoring the evolution of V as a function of time at different light intensities. The initial values of ideality found using this technique are consistent with estimates of the ideality factor obtained from measurements of photoluminescence vs light intensity and electroluminescence vs current density. Time-dependent simulations of the measurement on modeled devices, which include the effects of mobile ionic charge, reveal that this initial value can be correlated to an existing zero-dimensional model while steady-state values must be analyzed taking into account the homogeneity of carrier populations throughout the absorber layer. The analysis shows that Shockley-Read-Hall (SRH) recombination through deep traps at the charge-collection interfaces is dominant in both architectures of measured device. Using transient photovoltage measurements directly following illumination on bifacial devices, we further show that the perovskite–electron-transport-layer interface extends throughout the mesoporous TiO2 layer, consistent with a transient ideality signature corresponding to SRH recombination in the bulk of the film. This method will be useful for identifying performance bottlenecks in alternative variants of perovskite and other mixed ionic-electronic conducting absorber-based solar cells

    A High-Throughput Platform for Lentiviral Overexpression Screening of the Human ORFeome

    Get PDF
    In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs) from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2′-deoxyuridine (EdU) to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1α). The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes

    Measured binding coefficients for iodine and ruthenium dyes; Implications for recombination in dye sensitised solar cells

    No full text
    We have measured the binding coefficients of iodine to three dyes used in Dye Sensitised Solar Cells (DSSCs). Binding coefficients are quantified via the effect of iodine binding on the UV-vis spectrum of the dye. From iodine titration curves of dye sensitised TiO2 films we find that the binding coefficients of iodine to the dyes C101, N719 and AR24 (vide infra) are in the range of 2000-4000 M-1. From FTIR results and molecular modelling we show the iodine binds to the thiocyanate group in all these dyes. For the AR24 dye we present evidence that iodine also binds to the amine moiety on this dye. With these binding coefficients we show that the dye-iodine complex will be present at much higher concentrations than free iodine in the pore structure of a DSSC. As we have recently shown that iodine (rather than tri-iodide) is the dominant acceptor in electron recombination, the concentration dye-iodine complexes could influence recombination rates and thus V-oc. By comparison of recombination data on full cells, we show that AR24 accelerates recombination by a factor of 7 over N719, presumably due to the iodine binding to the amine group. We leave open the question why iodine binding to the amine group seems to have a stronger effect on the recombination than does binding to the thiocyanate

    The assessment of higher order competence development in nurse education Executive summary

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:q97/14442 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye-Sensitized Solar Cells

    No full text
    Tools that assess the limitations of dye sensitized solar cells (DSSCs) made with new materials are critical for progress. Measuring the transient electrical signals (voltage or current) after optically perturbing a DSSC is an approach which can give information about electron concentration, transport and recombination. Here we describe the theory and practice of this class of optoelectronic measurements, illustrated with numerous examples. The measurements are interpreted with the multiple trapping continuum model which describes electrons in a semiconductor with an exponential distribution of trapping states. We review standard small perturbation photocurrent and photovoltage transients, and introduce the photovoltage time of flight measurement which allows the simultaneous derivation of both effective diffusion and recombination coefficients. We then consider the utility of large perturbation measurements such as charge extraction and the current interrupt technique for finding the internal charge and voltage within a device. Combining these measurements allows differences between DSSCs to be understood in terms such as electron collection efficiency, semiconductor conduction band edge shifts and recombination kinetics

    The reorganization energy of intermolecular hole hopping between dyes anchored to surfaces

    No full text
    We measured the rate of hole hopping between dye molecules on titanium dioxide nanocrystals using cyclic voltammetry. Dyes commonly used in the field of dye sensitized solar cells exhibited efficient intermolecular charge transport, showing apparent diffusion coefficient values between 10(-8) up to over 10(-7) cm(2) s(-1) at room temperature. From temperature dependent measurements, we observed that hole transport across dye monolayers is a thermally activated process with Arrhenius activation energies between about 170 and 370 meV depending on the dye. Analysis of the data in terms of non-adiabatic Marcus theory of charge transfer enabled the estimation of the reorganization energy (740-1540 meV) and of an effective electronic coupling for the different systems. The measured reorganization energies show reasonable agreement with values obtained from density functional theory based calculations, validating our computational approach. Finally, we interpret the experimental and calculated data with reference to the chemical structure of the dyes and to the packing of the dyes on the surface of the TiO2 and suggest that delocalization of the HOMO and rigidity of the conjugated molecular structure result respectively in lower outer and inner sphere reorganization energies

    What makes dye cells tick, or kick the bucket? Injection, regeneration, and collection efficiencies in new, old, dry, and wet dye sensitized solar cells

    No full text
    DSC electrolytes tolerant of water are demonstrate (figure 1). Some with surprising stability (figure 2). TAS data of complete cells allows determination of the rate constants for regeneration of S+ and electron recombination with S+ (figure 3). Luminescence lifetime (figure 4) of a large variety of cells, light soaked or thermally treated, indicate that the photocurrent can be explained by slow injection. We address diffusion length, its definition, determination, and relation to the empirical optimum thickness for DSCs
    corecore