116 research outputs found

    Plastid thylakoid architecture optimizes photosynthesis in diatoms

    Get PDF
    Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.ISSN:2041-172

    Oligomeric Status and Nucleotide Binding Properties of the Plastid ATP/ADP Transporter 1: Toward a Molecular Understanding of the Transport Mechanism

    Get PDF
    Background: Chloroplast ATP/ADP transporters are essential to energy homeostasis in plant cells. However, their molecular mechanism remains poorly understood, primarily due to the difficulty of producing and purifying functional recombinant forms of these transporters. Methodology/Principal Findings: In this work, we describe an expression and purification protocol providing good yields and efficient solubilization of NTT1 protein from Arabidopsis thaliana. By biochemical and biophysical analyses, we identified the best detergent for solubilization and purification of functional proteins, LAPAO. Purified NTT1 was found to accumulate as two independent pools of well folded, stable monomers and dimers. ATP and ADP binding properties were determined, and Pi, a co-substrate of ADP, was confirmed to be essential for nucleotide steady-state transport. Nucleotide binding studies and analysis of NTT1 mutants lead us to suggest the existence of two distinct and probably inter-dependent binding sites. Finally, fusion and deletion experiments demonstrated that the C-terminus of NTT1 is not essential for multimerization, but probably plays a regulatory role, controlling the nucleotide exchange rate. Conclusions/Significance: Taken together, these data provide a comprehensive molecular characterization of a chloroplas

    A method for detergent-free isolation of membrane proteins in their local lipid environment.

    Get PDF
    Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins

    SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production

    Get PDF
    It has become increasing clear that alterations in cellular metabolism have a key role in the generation and maintenance of cancer. Some of the metabolic changes can be attributed to the activation of oncogenes or loss of tumor suppressors. Here, we show that the mitochondrial sirtuin, SirT3, acts as a tumor suppressor via its ability to suppress reactive oxygen species (ROS) and regulate hypoxia inducible factor 1α (HIF-1α). Primary mouse embryo fibroblasts (MEFs) or tumor cell lines expressing SirT3 short-hairpin RNA exhibit a greater potential to proliferate, and augmented HIF-1α protein stabilization and transcriptional activity in hypoxic conditions. SirT3 knockdown increases tumorigenesis in xenograft models, and this is abolished by giving mice the anti-oxidant N-acetyl cysteine. Moreover, overexpression of SirT3 inhibits stabilization of HIF-1α protein in hypoxia and attenuates increases in HIF-1α transcriptional activity. Critically, overexpression of SirT3 decreases tumorigenesis in xenografts, even when induction of the sirtuin occurs after tumor initiation. These data suggest that SirT3 acts to suppress the growth of tumors, at least in part through its ability to suppress ROS and HIF-1α

    SecA, a remarkable nanomachine

    Get PDF
    Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data

    Molecular Weight and State of Association of the Purified b 6 f Complex from Chlamydomonas Reinhardtii

    No full text

    Conformational changes in the cytochrome b<sub>6</sub>f complex induced by inhibitor binding

    No full text
    Binding of stigmatellin, an inhibitor of the Qo site of the bc-type complexes, has been shown to induce large conformational changes of the Rieske protein in the respiratory bc1 complex (Kim, H., Xia, D., Yu, C. A., Xia, J. Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8026-8033; Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S., and Jap, B. K. (1998) Science 281, 64-71; Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Nature 392, 677-684). Such a movement seems necessary to shuttle electrons from the membrane-soluble quinol to the extramembrane heme of cytochrome c1. To see whether similar changes occur in the related photosynthetic b6f complex, we have studied the effect of the binding of stigmatellin to the eukaryotic b6f complex by electron crystallography. Comparison of projection maps of thin three-dimensional crystals prepared with or without stigmatellin, and either negatively stained or embedded in glucose, reveals a similar type of movement to that observed in the bc1 complex and suggests also the occurrence of conformational changes in the transmembrane region

    Membrane association of cytochrome b6f subunits. The Rieske iron-sulfur protein from Chlamydomonas reinhardtii is an extrinsic protein.

    No full text
    International audienceThe mode of membrane attachment of five subunits from Chlamydomonas reinhardtii cytochrome b6f complex has been studied using biochemical approaches. Antisera specific for cytochrome f, cytochrome b6, the Rieske iron-sulfur protein, subunit IV, and a 4-kDa subunit (product of the petG gene) were used to quantify the degree of extraction of each of these polypeptides following various treatments. In contrast to the other four subunits, the Rieske protein was extracted to extents varying between 50 and 100% following two cycles of freezing and thawing in the presence of chaotropic agents (KSCN, urea, or NaI). The Rieske protein was not extracted by 2 M NaCl and was rather resistant to alkaline treatments, being extracted by 20 mM 3-(cyclohexylamino)propanesulfonic acid buffer only at pH > 11.5. The hydrodynamic behavior of the isolated Rieske protein was examined in the absence and presence of detergent by ultracentrifugation and by molecular sieving. The extracted protein bound neither to laurylmaltoside nor to C12E8 micelles. Its sedimentation coefficient (D20,w = 9.6 x 10(-11) m2 x s-1), diffusion coefficient (s20,w = 2S), an deduced molecular mass (20.0 +/- 1.7 kDa) are those expected for the monomeric protein. We conclude that the Rieske protein is extrinsic and therefore does not cross the membrane, although its association with the rest of the complex involves primarily hydrophobic interactions, and that the other four subunits analyzed are intrinsic
    corecore