151 research outputs found

    Is there a prescribed parameter's space for the adiabatic geometric phase?

    Full text link
    The Aharonov-Anandan and Berry phases are determined for the cyclic motions of a non-relativistic charged spinless particle evolving in the superposition of the fields produced by a Penning trap and a rotating magnetic field. Discussion about the selection of the parameter's space and the relationship between the Berry phase and the symmetry of the binding potential is given.Comment: 7 pages, 2 figure

    The acceptability of an internet-based exposure treatment for flying phobia with and without therapist guidance: Patients’ expectations, satisfaction, treatment preferences, and usability

    Get PDF
    Purpose: Internet-based treatments have been tested for several psychological disorders. However, few studies have directly assessed the acceptability of these self-applied interventions in terms of expectations, satisfaction, treatment preferences, and usability. Moreover, no studies provide this type of data on Internet-based treatment for flying phobia (FP), with or without therapist guidance. The aim of this study was to analyze the acceptability of an Internet-based treatment for FP (NO-FEAR Airlines) that includes exposure scenarios composed of images and real sounds. A secondary aim was to compare patients’ acceptance of two ways of delivering this treatment (with or without therapist guidance). Patients and methods: The sample included 46 participants from a randomized controlled trial who had received the self-applied intervention with (n = 23) or without (n = 23) therapist guidance. All participants completed an assessment protocol conducted online and by telephone at both pre- and posttreatment. Results: Results showed good expectations, satisfaction, opinion, and usability, regardless of the presence of therapist guidance, including low aversiveness levels from before to after the intervention. However, participants generally preferred the therapist-supported condition. Conclusion: NO-FEAR Airlines is a well-accepted Internet-based treatment that can help enhance the application of the exposure technique, improving patient acceptance and access to FP treatment

    Examination of the Feynman-Hibbs Approach in the Study of NeN_N-Coronene Clusters at Low Temperatures

    Get PDF
    Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of many-body systems at thermal equilibrium since they allow us to easily include quantum corrections within standard classical simulations. In this work we apply the FH formulation to the study of NeN_N-coronene clusters (N=N= 1-4, 14) in the 2-14 K temperature range. Quadratic (FH2) and quartic (FH4) contributions to the effective potentials are built upon Ne-Ne and Ne-coronene analytical potentials. In particular, a new corrected expression for the FH4 effective potential is reported. FH2 and FH4 cluster energies and structures -obtained from energy optimization through a basin-hoping algorithm as well as classical Monte Carlo simulations- are reported and compared with reference path integral Monte Carlo calculations. For temperatures T>4T> 4 K, both FH2 and FH4 potentials are able to correct the purely classical calculations in a consistent way. However, the FH approach fails at lower temperatures, especially the quartic correction. It is thus crucial to assess the range of applicability of this formulation and, in particular, to apply the FH4 potentials with great caution. A simple model of NN isotropic harmonic oscillators allows us to propose a means of estimating the cut-off temperature for the validity of the method, which is found to increase with the number of atoms adsorbed on the coronene molecule

    Smarr's formula for black holes with non-linear electrodynamics

    Full text link
    It is known that for nonlinear electrodynamics the First Law of Black Hole Mechanics holds, however the Smarr's formula for the total mass does not. In this contribution we discuss the point and determine the corresponding expressions for the Bardeen black hole solution that represents a nonlinear magnetic monopole. The same is done for the regular black hole solution derived by Ayon-Beato and Garcia, showing that in the case that variations of the electric charge are involved, the Smarr's formula does not longer is valid.Comment: 10 pages, 3 figures.Contribution to the Festscrift of Prof. A. Garci

    Distribution of non-AT(1), non-AT(2) binding of (125)I-Sarcosine(1), Isoleucine(8) angiotensin II in neurolysin knockout mouse brains

    Get PDF
    The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 microM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (-2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology

    Charged Dual String Vacua from Interacting Rotating Black Holes Via Discrete and Nonlinear Symmetries

    Full text link
    Using the stationary formulation of the toroidally compactified heterotic string theory in terms of a pair of matrix Ernst potentials we consider the four-dimensional truncation of this theory with no U(1) vector fields excited. Imposing one time-like Killing vector permits us to express the stationary effective action as a model in which gravity is coupled to a matrix Ernst potential which, under certain parametrization, allows us to interpret the matter sector of this theory as a double Ernst system. We generate a web of string vacua which are related to each other via a set of discrete symmetries of the effective action (some of them involve S-duality transformations and possess non-perturbative character). Some physical implications of these discrete symmetries are analyzed and we find that, in some particular cases, they relate rotating black holes coupled to a dilaton with no Kalb--Ramond field, static black holes with non-trivial dilaton and antisymmetric tensor fields, and rotating and static naked singularities. Further, by applying a nonlinear symmetry, namely, the so-called normalized Harrison transformation, on the seed field configurations corresponding to these neutral backgrounds, we recover the U(1)^n Abelian vector sector of the four-dimensional action of the heterotic string, charging in this way the double Ernst system which corresponds to each one of the neutral string vacua, i.e., the stationary and the static black holes and the naked singularities.Comment: 19 pages in latex, added referenc

    Negative and positive affect regulation in a transdiagnostic internet-based protocol for emotional disorders: Randomized controlled trial

    Get PDF
    Background: Emotional disorders (EDs) are among the most prevalent mental disorders. Existing evidence-based psychological treatments are not sufficient to reduce the disease burden of mental disorders. It is therefore essential to implement innovative solutions to achieve a successful dissemination of psychological treatment protocols, and in this regard, the use of information and communication technologies such as the internet can be very useful. Furthermore, the literature suggests that not everyone with an ED receives the appropriate treatment. This situation has led to the development of new intervention proposals based on the transdiagnostic perspective, which attempts to address the underlying processes common to EDs. Most of these transdiagnostic interventions focus primarily on downregulating negative affectivity (NA), and less attention has been paid to strengths and the upregulation of positive affectivity, despite its importance for well-being and mental health. Objective: This study aims to evaluate the efficacy of a transdiagnostic internet-based treatment for EDs in a community sample. Methods: A 3-armed randomized controlled trial was conducted. A total of 216 participants were randomly assigned to a transdiagnostic internet-based protocol (TIBP), a TIBP+ positive affect (PA) component, or a waiting list (WL) control group. The treatment protocol contained core components mainly addressed to downregulate NA (ie, present-focused emotional awareness and acceptance, cognitive flexibility, behavioral and emotional avoidance patterns, and interoceptive and situational exposure) as well as a PA regulation component to promote psychological strengths and enhance well-being. Data on depression, anxiety, quality of life, neuroticism and extraversion, and PA/NA before and after treatment were analyzed. Expectations and opinions of treatment were also analyzed. Results: Within-group comparisons indicated significant pre-post reductions in the two experimental conditions. In the TIBP+PA condition, the effect sizes were large for all primary outcomes (d=1.42, Beck Depression Inventory [BDI-II]; d=0.91, Beck Anxiety Inventory [BAI]; d=1.27, Positive and Negative Affect Schedule-Positive [PANAS-P]; d=1.26, Positive and Negative Affect Schedule-Negative [PANAS-N]), whereas the TIBP condition yielded large effect sizes for BDI-II (d=1.19) and PANAS-N (d=1.28) and medium effect sizes for BAI (d=0.63) and PANAS-P (d=0.69). Between-group comparisons revealed that participants who received one of the two active treatments scored better at posttreatment than WL participants. Although there were no statistically significant differences between the two intervention groups on the PA measure, effect sizes were consistently larger in the TIBP+PA condition than in the standard transdiagnostic protocol. Conclusions: Overall, the findings indicate that EDs can be effectively treated with a transdiagnostic intervention via the internet, as significant improvements in depression, anxiety, and quality of life measures were observed. Regarding PA measures, promising effects were found, but more research is needed to study the role of PA as a therapeutic component

    Non-minimal coupling of photons and axions

    Get PDF
    We establish a new self-consistent system of equations accounting for a non-minimal interaction of gravitational, electromagnetic and axion fields. The procedure is based on a non-minimal extension of the standard Einstein-Maxwell-axion action. The general properties of a ten-parameter family of non-minimal linear models are discussed. We apply this theory to the models with pp-wave symmetry and consider propagation of electromagnetic waves non-minimally coupled to the gravitational and axion fields. We focus on exact solutions of electrodynamic equations, which describe quasi-minimal and non-minimal optical activity induced by the axion field. We also discuss empirical constraints on coupling parameters from astrophysical birefringence and polarization rotation observations.Comment: 31 pages, 2 Tables; replaced with the final version published in Classical and Quantum Gravit

    How can exact and approximate solutions of Einstein's field equations be compared?

    Full text link
    The problem of comparison of the stationary axisymmetric vacuum solutions obtained within the framework of exact and approximate approaches for the description of the same general relativistic systems is considered. We suggest two ways of carrying out such comparison: (i) through the calculation of the Ernst complex potential associated with the approximate solution whose form on the symmetry axis is subsequently used for the identification of the exact solution possessing the same multipole structure, and (ii) the generation of approximate solutions from exact ones by expanding the latter in series of powers of a small parameter. The central result of our paper is the derivation of the correct approximate analogues of the double-Kerr solution possessing the physically meaningful equilibrium configurations. We also show that the interpretation of an approximate solution originally attributed to it on the basis of some general physical suppositions may not coincide with its true nature established with the aid of a more accurate technique.Comment: 32 pages, 5 figure
    corecore