18 research outputs found
A Study of the Hoesch-Houben Synthesis in the Preparation of Aromatic Ketimines and Hydroxy-Phenyl Iminoesters
This synthesis involves the condensation of a phenol with a nitrile (aliphatic or aromatic). It is effected by the passage of dry hydrogen chloride through their solution in anhydrous ether, with or without the addition of dry zinc chloride. Anhydrous aluminum chloride was substituted for zinc chloride in some cases
The Prostaglandin F Synthase Activity of the Human Aldose Reductase AKR1B1 Brings New Lenses to Look at Pathologic Conditions
Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs), lead us to the discovery that AKR1B5 and later AKR1B1were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2/EP2 and PGF2α/FP may constitute a functional dyad with physiological relevance comparable to the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231) also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate, and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region containing two putative antioxidant response elements adjacent to TonE and AP1. We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors like alrestatin, Statil (ponalrestat), and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human pathologies
Gene expression profile of androgen modulated genes in the murine fetal developing lung
<p>Abstract</p> <p>Background</p> <p>Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood.</p> <p>Methods</p> <p>To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens.</p> <p>Results</p> <p>Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment.</p> <p>Conclusion</p> <p>Our results show clearly that there is a real delay in lung maturation between male and female in this period, the latter pursuing already lung maturation while the proper is not yet fully engaged in the differentiation processes at GD17. In addition, this study provides a list of genes which are under the control of androgens within the lung at the moment of surge of surfactant production in murine fetal lung.</p
Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis
Chromosomal translocations involving the KMT2A gene are among the most common genetic alterations found in pediatric acute myeloid leukemias although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we used a human model system of acute myeloid leukemia driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observed the development of a pronounced hypomethyl - ation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem-cell-associated genes and skewed expression of other genes, such as S100A8/9, implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-sequencing data showed that there were relatively few leukemia-specific changes and that the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed that the adenylate cyclase gene ADCY9 is an essential gene in KM3-acute myeloid leukemia, and suggested the potential for autocrine signaling through the chemokine receptor CCR1 and CCL23 ligand. Collectively, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis
The Role of TNF-α in Mice with Type 1- and 2- Diabetes
Background: Previously, we have demonstrated that short-term treatment of new onset diabetic Non-obese diabetic (NOD) mice, mice that are afflicted with both type 1 (T1D) and type 2 (T2D) diabetes with either Power Mix (PM) regimen or alpha1 antitrypsin (AAT) permanently restores euglycemia, immune tolerance to self-islets and normal insulin signaling. Methodology and Principal Findings: To search for relevant therapeutic targets, we have applied genome wide transcriptional profiling and systems biology oriented bioinformatics analysis to examine the impact of the PM and AAT regimens upon pancreatic lymph node (PLN) and fat, a crucial tissue for insulin dependent glucose disposal, in new onset diabetic non-obese diabetic (NOD) mice. Systems biology analysis identified tumor necrosis factor alpha (TNF-) as the top focus gene hub, as determined by the highest degree of connectivity, in both tissues. In PLNs and fat, TNF- interacted with 53% and 32% of genes, respectively, associated with reversal of diabetes by previous treatments and was thereby selected as a therapeutic target. Short-term anti-TNF- treatment ablated a T cell-rich islet-invasive and beta cell-destructive process, thereby enhancing beta cell viability. Indeed anti-TNF- treatment induces immune tolerance selective to syngeneic beta cells. In addition to these curative effects on T1D anti-TNF-e33254 treatment restored in vivo insulin signaling resulting in restoration of insulin sensitivity. Conclusions: In short, our molecular analysis suggested that PM and AAT both may act in part by quenching a detrimental TNF- dependent effect in both fat and PLNs. Indeed, short-term anti-TNF- mAb treatment restored enduring euglycemia, self-tolerance, and normal insulin signaling
Modulation of T Cell Function by Combination of Epitope Specific and Low Dose Anticytokine Therapy Controls Autoimmune Arthritis
Innate and adaptive immunity contribute to the pathogenesis of autoimmune arthritis by generating and maintaining inflammation, which leads to tissue damage. Current biological therapies target innate immunity, eminently by interfering with single pro-inflammatory cytokine pathways. This approach has shown excellent efficacy in a good proportion of patients with Rheumatoid Arthritis (RA), but is limited by cost and side effects. Adaptive immunity, particularly T cells with a regulatory function, plays a fundamental role in controlling inflammation in physiologic conditions. A growing body of evidence suggests that modulation of T cell function is impaired in autoimmunity. Restoration of such function could be of significant therapeutic value. We have recently demonstrated that epitope-specific therapy can restore modulation of T cell function in RA patients. Here, we tested the hypothesis that a combination of anti-cytokine and epitope-specific immunotherapy may facilitate the control of autoimmune inflammation by generating active T cell regulation. This novel combination of mucosal tolerization to a pathogenic T cell epitope and single low dose anti-TNFα was as therapeutically effective as full dose anti-TNFα treatment. Analysis of the underlying immunological mechanisms showed induction of T cell immune deviation