1,953 research outputs found
The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements
This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by s=0.5 ppm over the continents and s=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transpor
Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time
Currently two polar orbiting satellite instruments measure CO<sub>2</sub> concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO<sub>2</sub> abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO<sub>2</sub> source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8°x10°) allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO<sub>2</sub> near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite instruments performed relatively well over the continents resulting mainly from the larger prior flux uncertainties over land than over the oceans. In addition, the surface networks are rather sparse over land increasing the additional benefit of satellite measurements there. Globally, challenging satellite instrument precisions are needed to compete with the current surface network (about 1ppm for weekly and 8°x10° averaged SCIAMACHY columns). Regionally, however, these requirements relax considerably, increasing to 5ppm for SCIAMACHY over tropical continents. This points not only to an interesting research area using SCIAMACHY data, but also to the fact that satellite requirements should not be quantified by only a single number. The applicability of our synthetic results to real satellite instruments is limited by rather crude representations of instrument and data retrieval related uncertainties. This should receive high priority in future work
Radio Astronomy
Contains reports on four research projects.National Aeronautics and Space Administration (Grant NsG-240-62)National Aeronautics and Space Administration (Grant NsG-419)Lincoln Laboratory (Purchase Order DDL BB-107)U. S. Air Force (Contract AF 19(628)-500)Office of Naval Research (Contract Nonr 3963(02
Radio Astronomy
Contains reports on four research projects.National Aeronautics and Space Administration (Grant NsG-264-62)U. S. Navy (Office of Naval Research) under Contract Nonr-3963(02)-Task 2Lincoln Laboratory, Purchase Order DDL B-00368U. S. NavyU. S. ArmyU. S. Air Force under Air Force Contract AF19(604)-7400National Aeronautics and Space Administration (Grant NsG-250-62)National Aeronautics and Space Administration (Contract NaSr-101
Cycloadditions in mixed aqueous solvents: the role of the water concentration
We examined the kinetics of a series of cycloaddition reactions in mixtures of water with methanol, acetonitrile and poly(ethylene glycol) (MW 1000). The reactions include the Diels–Alder (DA) reaction between cyclopentadiene and N-n-butylmaleimide or acridizinium bromide, the retro-Diels-Alder (RDA) reaction of 1,4,4a,9a-tetrahydro-4a-methyl-(1α,4α,4aα,9aα)-1,4-methaneanthracene-9,10-dione and the 1,3-dipolar cycloaddition of benzonitrile oxide with N-n-butylmaleimide. Plots of logk vs the molar concentration or volume fraction of water are approximately linear, but with a characteristic break around 40 M water. This break, absent for the RDA reaction, is ascribed to hydrophobic effects. Comparison with aqueous mixtures of the more hydrophobic 1-propanol shows that these mixtures induce qualitatively similar effects on the rate, but that preferential solvation effects cause the mixtures of 1-propanol to exhibit a more complex behavior of logk on composition. The results are analyzed using the Abraham–Kamlett–Taft model. The solvent effects in aqueous mixtures are not satisfactorily described by this model. For some cycloadditions, small maxima in rate are observed in highly aqueous mixtures of alcohols. The origin of these maxima and the aforementioned breaks is most likely the same.
Diverse Gamers: Resistance Through Video Gameplay
With most of the global population engaging with video games, it is crucial to understand the relationship between gaming and the holistic health of players. However, counseling scholarship exploring the relationship between gaming technology and mental health is nascent. Moreover, ethical guidelines in counseling require professionals to further their awareness and competence while working with underrepresented populations (American Counseling Association; ACA, 2014). To address the preceding statements, this two-study dissertation focused on expanding awareness and clinical understanding of video game technology and human experience. The first study used quantitative methods to examine the relationship between race-related stress, motivations to play online video games, and psychological well-being for gamers of color. Results from this study revealed several significant interactions between racialized distress, motivations for online gaming, and psychological well-being. More specifically, gaming motives for recreational gameplay partially mediated the relationship between racialized distress and psychological well-being for gamers of color. The second study used qualitative methods to explore connectedness with Black Queer men who play video games. Findings from the second study underscored the capacity of video games and gaming communities to be beneficial for soothing distress and building life-enriching relationships. Additional insights, limitations, and suggestions for counseling educators, researchers, and practitioners are also discussed
Flight Servicing of Robotic Refueling Mission 3
The Robotic Refueling Mission 3 (RRM3) payload launched aboard a SpaceX rocket en route to the International Space Station on December 5th, 2018. The Goddard Space Flight Center designed payload carried approximately 50 liters of liquid methane onboard, with a mission to demonstrate long term storage and transfer of the cryogenic fluid in microgravity. Kennedy Space Center (KSC) was tasked to design, fabricate, test, and operate a system equipped to fill an RRM3 dewar with liquid methane prior to launch. Though KSC has a rich history of fueling rockets and payloads, no such operations had previously been accomplished using liquid methane. As such, all of the hardware and processes had to be developed from scratch. The completed ground system design, along with the verification and validation testing will be outlined in this paper. Several challenges that were met and overcome during procurement of the high purity methane are described. In addition, budget restrictions prohibited fueling operations from occurring in traditional processing facilities. The unique and creative solutions which were required to maintain payload cleanliness during cryogenic servicing are also detailed
Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing)
Water stable isotopologues provide integrated tracers of the atmospheric
water cycle, affected by changes in air mass origin, non-convective
and convective processes and continental recycling. Novel remote
sensing and in situ measuring techniques have recently offered
opportunities for monitoring atmospheric water vapour isotopic
composition. Recently developed infrared laser spectrometers allow for
continuous in situ measurements of surface water vapour
δD<sub>v</sub> and
δ<sup>18</sup>O<sub>v</sub>. So far, very few intercomparisons
of measurements conducted using different techniques have been
achieved at a given location, due to difficulties intrinsic to the
comparison of integrated with local measurements. Nudged simulations
conducted with high-resolution isotopically enabled general circulation models (GCMs) provide
a consistent framework for comparison with the different types of
observations. Here, we compare simulations conducted with the
ECHAM5-wiso model with two types of water vapour isotopic data
obtained during summer 2012 at the forest site of Kourovka, western
Siberia: hourly ground-based FTIR total atmospheric columnar
δD<sub>v</sub> amounts, and in situ hourly Picarro
δD<sub>v</sub> measurements. There is an excellent
correlation between observed and predicted
δD<sub>v</sub> at surface while the comparison between
water column values derived from the model compares well with FTIR
estimates
Eric Breon, Horn
Horn Quintet in E-flat major, K. 407 / Wolfgang Amadeus Mozart; Parable VIII for Solo Horn / Vincent Persichetti; Scherzo Concertante / Václav Nelhybel; From Six Melodies for Horn and Piano / Charles Gounod; Suite for Horn and Piano / Alec Wilde
Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols
International audienceSCIAMACHY CO2 measurements show a large variability in total column CO2 over the Sahara desert of up to 10%, which is not anticipated from in situ measurements and cannot be explained by results of atmospheric models. Comparisons with colocated aerosol measurements by TOMS and MISR over the Sahara indicate that the seasonal variation of SCIAMACHY-observed CO2 strongly resembles seasonal variations of windblown dust. Correlation coefficients of monthly datasets of colocated MISR aerosol optical depth and SCIAMACHY CO2 vary between 0.6 and 0.8, indicating that about half of the CO2 variance is explained by aerosol optical depth. Radiative transfer model calculations confirm the role of dust and can explain the size of the errors. Sensitivity tests suggest that the remaining variance may largely be explained by variations in the vertical distribution of dust. Further calculations for a few typical aerosol classes and a broad range of atmospheric conditions show that the impact of aerosols on SCIAMACHY retrieved CO2 is by far the largest over the Sahara, but may also reach significant levels elsewhere. Over the continents, aerosols lead mostly to overestimated CO2 columns with the exception of biomass burning plumes and dark coniferous forests. Inverse modelling calculations confirm that aerosol correction of SCIAMACHY CO2 measurements is needed to derive meaningful source and sink estimates. Methods for correcting aerosol-induced errors exist, but so far mainly on the basis of theoretical considerations. As demonstrated by this study, SCIAMACHY may contribute to a verification of such methods using real data
- …
