11 research outputs found

    Improving the outcomes of carotid endarterectomy: Results of a statewide quality improvement project

    Get PDF
    AbstractObjective: The purpose of this study was to establish the statewide outcomes for carotid endarterectomy (CEA) and to facilitate improvement in outcomes through feedback, peer discussion, and ongoing process and outcome measurement. Methods: The Medicare Part A claims files were used to identify all Medicare patients undergoing CEA in Iowa during two 12-month time periods (January 1994–December 1994 and June 1995–May 1996). Medical record abstraction was used to obtain surgical indications, perioperative care process, and outcome information. Confidential reports were provided to each hospital (N = 30) where the procedure was performed. Surgeons performing the procedure (N = 79) were invited to meetings to discuss care process variation and outcomes. Voluntary participation was solicited in a standardized program of ongoing hospital-based data collection of CEA process and outcome data. Results: The statewide combined stroke or mortality rate decreased from 7.8% in 1994 to 4.0% in the 1995 to 1996 time period (P <.001). Fourteen hospitals, accounting for 74% of the statewide cases, participated in ongoing data collection. The combined stroke or mortality rate in these hospitals decreased significantly (P <.05) over time from 6.5% (1994) to 3.7% (1995-1996) to 1.8% (June 1997–May 1998). The use of intraoperative assessment of the operative site (20% in 1994, 46% in 1997-1998) and patch angioplasty (14% in 1994, 30% in 1997-1998) increased significantly during this time in the participating hospitals. Conclusions: Confidential feedback of outcome and process data for CEA may lead to change in perioperative care processes and improved outcomes. Standardized community-based outcome analysis should become routine for CEA to ensure that optimum results are being achieved. (J Vasc Surg 2000;31:918-26.

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy

    Get PDF
    Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapie

    Epigenome-Wide Association Study Reveals CpG Sites Associated with Thyroid Function and Regulatory Effects on KLF9

    Get PDF
    Background: Thyroid hormones play a key role in differentiation and metabolism and are known regulators of gene expression through both genomic and epigenetic processes including DNA methylation. The aim of this study was to examine associations between thyroid hormones and DNA methylation. Methods: We carried out a fixed-effect meta-analysis of epigenome-wide association study (EWAS) of blood DNA methylation sites from 8 cohorts from the ThyroidOmics Consortium, incorporating up to 7073 participants of both European and African ancestry, implementing a discovery and replication stage. Statistical analyses were conducted using normalized beta CpG values as dependent and log-transformed thyrotropin (TSH), free thyroxine, and free triiodothyronine levels, respectively, as independent variable in a linear model. The replicated findings were correlated with gene expression levels in whole blood and tested for causal influence of TSH and free thyroxine by two-sample Mendelian randomization (MR). Results: Epigenome-wide significant associations (p-value <1.1E-7) of three CpGs for free thyroxine, five for free triiodothyronine, and two for TSH concentrations were discovered and replicated (combined p-values = 1.5E-9 to 4.3E-28). The associations included CpG sites annotated to KLF9 (cg00049440) and DOT1L (cg04173586) that overlap with all three traits, consistent with hypothalamic-pituitary-thyroid axis physiology. Significant associations were also found for CpGs in FKBP5 for free thyroxine, and at CSNK1D/LINCO1970 and LRRC8D for free triiodothyronine. MR analyses supported a causal effect of thyroid status on DNA methylation of KLF9. DNA methylation of cg00049440 in KLF9 was inversely correlated with KLF9 gene expression in blood. The CpG at CSNK1D/LINC01970 overlapped with thyroid hormone receptor alpha binding peaks in liver cells. The total additive heritability of the methylation levels of the six significant CpG sites was between 25% and 57%. Significant methylation QTLs were identified for CpGs at KLF9, FKBP5, LRRC8D, and CSNK1D/LINC01970. Conclusions: We report novel associations between TSH, thyroid hormones, and blood-based DNA methylation. This study advances our understanding of thyroid hormone action particularly related to KLF9 and serves as a proof-of-concept that integrations of EWAS with other -omics data can provide a valuable tool for unraveling thyroid hormone signaling in humans by complementing and feeding classical in vitro and animal studies

    Ovarian cancer pathology characteristics as predictors of variant pathogenicity in BRCA1 and BRCA2

    Get PDF
    BackgroundThe distribution of ovarian tumour characteristics differs between germline BRCA1 and BRCA2 pathogenic variant carriers and non-carriers. In this study, we assessed the utility of ovarian tumour characteristics as predictors of BRCA1 and BRCA2 variant pathogenicity, for application using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) variant classification system.MethodsData for 10,373 ovarian cancer cases, including carriers and non-carriers of BRCA1 or BRCA2 pathogenic variants, were collected from unpublished international cohorts and consortia and published studies. Likelihood ratios (LR) were calculated for the association of ovarian cancer histology and other characteristics, with BRCA1 and BRCA2 variant pathogenicity. Estimates were aligned to ACMG/AMP code strengths (supporting, moderate, strong).ResultsNo histological subtype provided informative ACMG/AMP evidence in favour of BRCA1 and BRCA2 variant pathogenicity. Evidence against variant pathogenicity was estimated for the mucinous and clear cell histologies (supporting) and borderline cases (moderate). Refined associations are provided according to tumour grade, invasion and age at diagnosis.ConclusionsWe provide detailed estimates for predicting BRCA1 and BRCA2 variant pathogenicity based on ovarian tumour characteristics. This evidence can be combined with other variant information under the ACMG/AMP classification system, to improve classification and carrier clinical management.Peer reviewe
    corecore