7 research outputs found

    A Distribution of Large Particles in the Coma of Comet 103P/Hartley 2

    Full text link
    The coma of comet 103P/Hartley 2 has a significant population of large particles observed as point sources in images taken by the Deep Impact spacecraft. We measure their spatial and flux distributions, and attempt to constrain their composition. The flux distribution of these particles implies a very steep size distribution with power-law slopes ranging from -6.6 to -4.7. The radii of the particles extend up to 20 cm, and perhaps up to 2 m, but their exact sizes depend on their unknown light scattering properties. We consider two cases: bright icy material, and dark dusty material. The icy case better describes the particles if water sublimation from the particles causes a significant rocket force, which we propose as the best method to account for the observed spatial distribution. Solar radiation is a plausible alternative, but only if the particles are very low density aggregates. If we treat the particles as mini-nuclei, we estimate they account for <16-80% of the comet's total water production rate (within 20.6 km). Dark dusty particles, however, are not favored based on mass arguments. The water production rate from bright icy particles is constrained with an upper limit of 0.1 to 0.5% of the total water production rate of the comet. If indeed icy with a high albedo, these particles do not appear to account for the comet's large water production rate. production rate. Erratum: We have corrected the radii and masses of the large particles of comet 103P/Hartley 2 and present revised conclusions in the attached erratum.Comment: Original article: 46 pages, 17 figures, 5 tables, published in Icarus. Erratum: 5 pages, 1 table, accepted for publication in Icaru

    LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of a lunar dust exosphere

    Shape, Density, and Geology of the Nucleus of Comet 103P/Hartley 2

    Get PDF
    Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds 1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the objects complex rotation

    PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars

    Get PDF
    After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies

    Shape, density, and geology of the nucleus of Comet 103P/Hartley 2

    Get PDF
    a b s t r a c t Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds &lt;40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a &apos;&apos;waist&apos;&apos; between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200-400 kg m À3 . Such a mean density suggests mass loss per orbit of &gt;1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object&apos;s complex rotation

    EPOXI at Comet Hartley 2

    No full text
    International audienceUnderstanding how comets work-what drives their activity-is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO2, which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus
    corecore