10 research outputs found

    Crustal domains in the Western Barents Sea

    Get PDF
    The crustal architecture of the Barents Sea is still enigmatic due to complex evolution during the Timanian and Caledonian orogeny events, further complicated by several rifting episodes. In this study we present the new results on the crustal structure of the Caledonian–Timanian transition zone in the western Barents. We extend the work of Aarseth et al. (2017), by utilizing the seismic tomography approach to model Vp, Vs and Vp/Vs ratio, combined with the reprocessed seismic reflection line, and further complemented with gravity modelling. Based on our models we document in 3-D the position of the Caledonian nappes in the western Barents Sea. We find that the Caledonian domain is characterized by high crustal reflectivity, caused by strong deformation and/or emplacement of mafic intrusions within the crystalline crust. The Timanian domain shows semi-transparent crust with little internal reflectivity, suggesting less deformation. We find, that the eastern branch of the earlier proposed Caledonian suture, cannot be associated with the Caledonian event, but can rather be a relict from the Timanian terrane assemblance, marking one of the crustal microblocks. This crustal block may have an E–W striking southern boundary, along which the Caledonian nappes were offset. A high-velocity/density crustal body, adjacent to the Caledonian–Timanian contact zone, is interpreted as a zone of metamorphosed rocks based on the comparison with global compilations. The orientation of this body correlates with regional gravity maxima zone. Two scenarios for the origin of the body are proposed: mafic emplacement during the Timanian assembly, or massive mafic intrusions associated with the Devonian extension.publishedVersio

    A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence

    Get PDF
    Highlights • The Lofoten/Vesterålen margin has less Early Cenozoic lava flows than believed. • Breakup of the L/V margin is delayed ∼1 m.y. from the Vøring Plateau to the south. • Late arrival of the Iceland Plume may explain delayed breakup and prolonged extension. The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5. km thick and ∼50. km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8. km), but is reduced to 6. km after 1. m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5. km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1. Ma, ∼1. m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time

    Dynamic Topography Development North of Iceland from Subaerial Exposure of the Igneous Logi Ridge, NE Atlantic

    Get PDF
    The Logi Ridge, located north of the West Jan Mayen Fracture Zone, is E-W oriented and 140-150 km long. The seafloor surrounding the Logi Ridge is ~0.65 km shallower than the conjugate seafloor east of the Mohn’s Ridge, attributed to asymmetry in the regional NE Atlantic dynamic uplift. Eight reflection seismic lines across the Logi Ridge constrain its development. Both the western and eastern parts have flat tops, indicating erosion at sea-level. Three different basement types surrounding the Logi Ridge are observed: rough basement represents abyssal hills original, or reactivated by later magmatic/tectonic events; smooth basement caused by basalt flows overprinting early sediments; irregular basement formed by later basalt flows and intrusions. The surrounding sediments have two distinct units, where the unit boundary is Middle Miocene (12-14 Ma). Mass transport from the Logi Ridge appears episodically throughout Late Oligocene to Middle Miocene, when development ends. The end of erosion age can also be estimated from seamount height, or present top seamount depth. In the west there is agreement with the age constrained by the sedimentation, proving little dynamic topography change. In the east, discrepancies between the methods are explained by 0.15-0.3 km dynamic uplift after submergence. Hence, most of the regional dynamic uplift occurred before the end of the Logi Ridge development in the Middle Miocene, suggesting a causative relationship. Minor recent magmatic growth and seafloor uplift over a ~100 km wide zone south-east of the Logi Ridge may be tied to the younger dynamic uplift in the east.publishedVersio

    The eastern Jan Mayen microcontinent volcanic margin

    Get PDF
    The Jan Mayen microcontinent (JMMC) in the NE Atlantic was created through two Cenozoic rift episodes. Originally part of East Greenland, the JMMC rifted from NW Europe during the Early Eocene under extensive magmatism. The eastern margin is conjugate to the Møre-Faeroes volcanic margin. The western JMMC margin underwent prolonged extension before it finally separated from East Greenland during the Late Oligocene. Here we present the modelling by forward/inverse ray tracing of two wide-angle seismic profiles acquired using Ocean Bottom Seismometers, across the northern and the southern JMMC. Early Eocene breakup magmatism at the eastern JMMC produced an igneous thickness of 7-9 km in the north, and 12-14 km in the south. While the continent is clear in the north, the southern JMMC appears to be affected by later Icelandic magmatism. Reduced seismic velocity and increased crustal thickness are compatible with continental crust adjacent to the volcanic margin in the south, but the continental presence towards the Iceland shelf is less clear. Our magnetic track off the southern JMMC gives seafloor spreading rates comparable to that of the conjugate Møre Margin. Transition to ultraslow seafloor spreading occurs at ∼43 Ma, indicating onset of major deformation of the JMMC. Calculating the igneous thickness -- mean Vp relationship at the eastern volcanic margin gives the typical positive correlation seen elsewhere on the NE Atlantic margins. The results indicate temperature driven breakup magmatism under passive mantle upwelling, with a maximum mantle temperature anomaly of ∼50℃ in the north and 90-150℃ in the south

    Lithospheric Control on Asthenospheric Flow From the Iceland Plume: 3-D Density Modeling of the Jan Mayen-East Greenland Region, NE Atlantic

    No full text
    The density structure of the oceanic lithosphere north of Iceland is key for understanding the effects of the Iceland plume on the greater Jan Mayen‐East Greenland Region. We obtain the 3‐D density structure of the sediments and the crust from regional reflection and refraction seismic lines. The temperature and related density structures of the mantle between 50 and 250 km are derived from a shear wave velocity (Vs) tomography model. To assess the density between the Moho and 50‐km depth, we combine forward and inverse 3‐D gravity modeling. Beneath the Middle Kolbeinsey Ridge (MKR) region, a deep, broad negative mantle density anomaly occurs under the Kolbeinsey Ridge. It is overlain by a narrower uppermost mantle NE‐SW elongated negative density anomaly, which is increasingly displaced eastward of the spreading axis northward. It crosses the West Jan Mayen Fracture Zone and becomes weaker approaching the Mohn's spreading ridge. The effect of this anomaly is consistent with significantly shallower basement on the eastern side of the MKR. We interpret this as the result of thermal erosion of the lithosphere by hot asthenospheric flow out from the Iceland plume, possibly the main driver for several eastward jumps of the MKR during the last 5.5 Ma. The cause for the deviation of the flow may be that the West Jan Mayen Fracture Zone is easier to cross in a region where the difference in lithospheric thickness is small. That implies that the bottom lithospheric topography exerts a regional but not local influence on upper asthenospheric flow. ©2018. American Geophysical Union. All Rights Reserved

    Crustal structure and erosion of the Lofoten/Vesterålen shelf, northern Norwegian margin

    Get PDF
    Highlights • Crustal thickness of the Lofoten/Vesterålen shelf is greater than old study suggested. • Mafic lower crust of the shelf area explains observed resistance to deformation. • Four Mesozoic-Cenozoic erosion episodes are indicated by sedimentary velocities vs burial. • Extensive erosion episodes are likely to be detrimental to petroleum potential. Abstract The Norwegian continental shelf has been through several rift phases since the Caledonian orogeny. Early Cretaceous rifting created the largest sedimentary basins, and Early Cenozoic continental breakup between East Greenland and Europe affected the continental shelf to various degrees. The Lofoten/Vesterålen shelf is located off Northern Norway, bordering the epicontinental Barents Sea to the northeast, and the deep-water Lofoten Basin to the west. An ocean bottom seismometer/hydrophone (OBS) survey was conducted over the shelf and margin areas in 2003 to constrain crustal structure and margin development. This study presents Profile 8-03, located between the islands of Lofoten/Vesterålen and the shelf edge. The wide-angle seismic data were modeled using forward/inverse raytracing to build a crustal velocity-depth transect. Gravity modeling was used to resolve an ambiguity in seismic Moho identification in the southwestern part. Results show a crustal thickness of ~31 km, significantly thicker than what a vintage land station based study suggested. Profile 8-03 and other OBS profiles to the southwest show high sedimentary velocities at or near the seafloor, increasing rapidly with depth. Sedimentary velocities were compared to the velocity-depth function derived from an OBS profile at the Barents Sea margin, tied to a coincident well log, where there is little erosion. Results from this profile and the crossing Profile 6-03 (Breivik et al. 2017) indicate three major erosion episodes; Late Triassic-Early Jurassic, tentatively mid-Cretaceous, Late Cretaceous–early Cenozoic, and a minor late glacial erosion episode off Vesterålen

    Crustal domains in the Western Barents Sea

    No full text
    The crustal architecture of the Barents Sea is still enigmatic due to complex evolution during the Timanian and Caledonian orogeny events, further complicated by several rifting episodes. In this study we present the new results on the crustal structure of the Caledonian–Timanian transition zone in the western Barents. We extend the work of Aarseth et al. (2017), by utilizing the seismic tomography approach to model Vp, Vs and Vp/Vs ratio, combined with the reprocessed seismic reflection line, and further complemented with gravity modelling. Based on our models we document in 3-D the position of the Caledonian nappes in the western Barents Sea. We find that the Caledonian domain is characterized by high crustal reflectivity, caused by strong deformation and/or emplacement of mafic intrusions within the crystalline crust. The Timanian domain shows semi-transparent crust with little internal reflectivity, suggesting less deformation. We find, that the eastern branch of the earlier proposed Caledonian suture, cannot be associated with the Caledonian event, but can rather be a relict from the Timanian terrane assemblance, marking one of the crustal microblocks. This crustal block may have an E–W striking southern boundary, along which the Caledonian nappes were offset. A high-velocity/density crustal body, adjacent to the Caledonian–Timanian contact zone, is interpreted as a zone of metamorphosed rocks based on the comparison with global compilations. The orientation of this body correlates with regional gravity maxima zone. Two scenarios for the origin of the body are proposed: mafic emplacement during the Timanian assembly, or massive mafic intrusions associated with the Devonian extension

    Crustal structure and evolution of the Arctic Caledonides: Results from controlled-source seismology

    Get PDF
    The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica
    corecore