47 research outputs found

    A cold-atom Ramsey clock with a low volume physics package

    Get PDF
    We demonstrate a Ramsey-type microwave clock interrogating the 6.835 GHz ground-state transition in cold 87Rb atoms loaded from a grating magneto-optical trap (GMOT) enclosed in an additively manufactured loop-gap resonator microwave cavity. A short-term stability of 1.5×10−11 τ−1/2 is demonstrated, in reasonable agreement with predictions from the signal-to-noise ratio of the measured Ramsey fringes. The cavity-grating package has a volume of ≈67 cm3, ensuring an inherently compact system while the use of a GMOT drastically simplifies the optical requirements for laser cooled atoms. This work is another step towards the realisation of highly compact portable cold-atom frequency standards

    Chip-scale packages for a tunable wavelength reference and laser cooling platform

    Get PDF
    We demonstrate a tunable, chip-scale wavelength reference to greatly reduce the complexity and volume of cold-atom sensors. A 1-mm optical path length microfabricated cell provides an atomic wavelength reference, with dynamic frequency control enabled by Zeeman-shifting the atomic transition through the magnetic field generated by the printed-circuit-board coils. The dynamic range of the laser frequency stabilization system is evaluated and used in conjunction with an improved generation of chip-scale cold-atom platforms that traps 4 million 87Rb atoms. The scalability and component consolidation provide a key step forward in the miniaturization of cold-atom sensors

    A systematic review of strategies to recruit and retain primary care doctors

    Get PDF
    Background There is a workforce crisis in primary care. Previous research has looked at the reasons underlying recruitment and retention problems, but little research has looked at what works to improve recruitment and retention. The aim of this systematic review is to evaluate interventions and strategies used to recruit and retain primary care doctors internationally. Methods A systematic review was undertaken. MEDLINE, EMBASE, CENTRAL and grey literature were searched from inception to January 2015.Articles assessing interventions aimed at recruiting or retaining doctors in high income countries, applicable to primary care doctors were included. No restrictions on language or year of publication. The first author screened all titles and abstracts and a second author screened 20%. Data extraction was carried out by one author and checked by a second. Meta-analysis was not possible due to heterogeneity. Results 51 studies assessing 42 interventions were retrieved. Interventions were categorised into thirteen groups: financial incentives (n=11), recruiting rural students (n=6), international recruitment (n=4), rural or primary care focused undergraduate placements (n=3), rural or underserved postgraduate training (n=3), well-being or peer support initiatives (n=3), marketing (n=2), mixed interventions (n=5), support for professional development or research (n=5), retainer schemes (n=4), re-entry schemes (n=1), specialised recruiters or case managers (n=2) and delayed partnerships (n=2). Studies were of low methodological quality with no RCTs and only 15 studies with a comparison group. Weak evidence supported the use of postgraduate placements in underserved areas, undergraduate rural placements and recruiting students to medical school from rural areas. There was mixed evidence about financial incentives. A marketing campaign was associated with lower recruitment. Conclusions This is the first systematic review of interventions to improve recruitment and retention of primary care doctors. Although the evidence base for recruiting and care doctors is weak and more high quality research is needed, this review found evidence to support undergraduate and postgraduate placements in underserved areas, and selective recruitment of medical students. Other initiatives covered may have potential to improve recruitment and retention of primary care practitioners, but their effectiveness has not been established

    A simple imaging solution for chip-scale laser cooling

    Get PDF
    International audienceWe demonstrate a simple stacked scheme that enables absorption imaging through a hole in the surface of a grating magneto-optical trap (GMOT) chip, placed immediately below a micro-fabricated vacuum cell. The imaging scheme is capable of overcoming the reduced optical access and surface scatter that is associated with this chip-scale platform while further permitting both trapping and imaging of the atoms from a single incident laser beam. The through-hole imaging is used to characterize the impact of the reduced optical overlap volume of the GMOT in the chip-scale cell, with an outlook to an optimized atom number in low volume systems
    corecore