64 research outputs found

    Analysis of resilience of ventilative cooling technologies in a case study building

    Get PDF
    Buildings globally are subjected to climate change and heatwaves, causing a risk of overheating and increasing energy use for cooling. Low- energy cooling solutions such as night cooling are promising to realize energy reduction and climate goals. Apart from energy performances, resilience is gaining importance in assessing the performance of the building and its systems. Resilience is defined as “an ability to withstand disruptions caused by extreme weather events, man-made disasters, power failure, change in use and atypical conditions; and to maintain capacity to adapt, learn and transform.” However, there is a clear lack of Resilience indicators specific for low energy cooling technologies. In this paper, the resilience of the night cooling in a residential building in Belgium is assessed for two external events: heat wave and shading failure. This paper shows the first attempt of a resilience indicator for night cooling as the effect on the shock of solar shading failure, heat wave or combination of both. It take 3.4 days to bring down the temperature below 25?, in case of shading failure and heatwaves compared to 9 hours in the reference case. Further research is needed to determine resilience indicators as a performance criteria of low-energy cooling systems

    Resilient cooling strategies – A critical review and qualitative assessment

    Get PDF
    The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out

    Typical and extreme weather datasets for studying the resilience of buildings to climate change and heatwaves

    Full text link
    peer reviewedWe present unprecedented datasets of current and future projected weather files for building simulations in 15 major cities distributed across ten climate zones worldwide. The datasets include ambient air temperature, relative humidity, atmospheric pressure, direct and diffuse solar irradiance, and wind speed at hourly resolution, which are essential climate elements needed to undertake building simulations. The datasets contain typical and extreme weather years in the EnergyPlus weather file (EPW) format and multiyear projections in comma-separated value (CSV) format for three periods: historical (2001-2020), future mid-term (2041-2060), and future long-term (2081-2100). The datasets were generated from projections of one regional climate model, which were bias-corrected using multiyear observational data for each city. The methodology used makes the datasets among the first to incorporate complex changes in the future climate for the frequency, duration, and magnitude of extreme temperatures. These datasets, created within the IEA EBC Annex 80 “Resilient Cooling for Buildings”, are ready to be used for different types of building adaptation and resilience studies to climate change and heatwaves.11. Sustainable cities and communitie

    Reliable design of natural night ventilation using building simulation

    No full text

    Dynamisch vs. quasi-statisch modelleren van het eindenergiegebruik voor verwarming

    No full text
    Om de energieprestatie van gebouwontwerpen te beoordelen, wordt in Vlaanderen gebruik gemaakt van de quasi-statische EPB-berekeningsmethode. In deze methode wordt voor de berekening van het jaarlijks eindenergiegebruik de complexe interactie tussen enerzijds gebouw en systeem en anderzijds de verschillende subsystemen vereenvoudigd. De energieverliezen die optreden bij opwekking, opslag, verdeling en afgifte van de gevraagde warmte, worden stapsgewijs berekend aan de hand van vooropgestelde, jaargemiddelde systeemrendementen. Vervolgens wordt het energiegebruik voor verwarming bepaald als een lineaire functie van de energievraag voor verwarming en de combinatie van de betreffende systeemrendementen. De nauwkeurigheid van deze berekeningsresultaten is cruciaal voor de doeltreffendheid van het energiebeleid (EPBD). Hierbij spelen de juistheid van de berekeningsmethode en de hierbij horende geïmplementeerde vereenvoudigingen een belangrijke rol. Vanuit deze context wordt in deze paper de accuraatheid van de vereenvoudigde berekeningsmethode geëvalueerd voor een typisch schoolgebouw. Met behulp van geïntegreerde, dynamische simulaties in TRNSYS wordt het eindenergiegebruik voor verwarming bepaald voor een traditioneel hydronisch verwarmingssysteem. De impact van de kwaliteit van gebouwschil, thermische capaciteit van het gebouw, raamoppervlakte en oriëntatie op het rendement van het verwarmingssysteem wordt bestudeerd. Verder wordt de correlatie tussen de rendementen voor het warmteopwekkings-, distributie- en afgiftesysteem en de deellastwerking van het verwarmingssysteem bekeken. Uit de resultaten van deze studie blijkt dat voor het onderzochte verwarmingssysteem, de vereenvoudigde berekeningsmethode goede resultaten oplevert. Jaargemiddelde systeemrendementen kunnen gebruikt worden mits betrouwbare waarden voor de rendementen gehanteerd worden.status: publishe
    corecore