4,579 research outputs found

    Combustion instability prediction using a nonlinear bipropellant vaporization model

    Get PDF
    Combustion instability prediction using nonlinear bipropellant vaporization mode

    Simultaneous interplanetary scintillation and Heliospheric Imager observations of a coronal mass ejection

    Get PDF
    We describe simultaneous Interplanetary Scintillation (IPS) and STEREO Heliospheric Imager (HI) observations of a coronal mass ejection (CME) on 16 May 2007. Strong CME signatures were present throughout the IPS observation. The IPS raypath lay within the field-of-view of HI-1 on STEREO-A and comparison of the observations shows that the IPS measurements came from a region within a faint CME front observed by HI-1A. This front may represent the merging of two converging CMEs. Plane-of-sky velocity estimates based on time-height plots of the two converging CME structures were 325 kms?1 and 550 kms?1 for the leading and trailing fronts respectively. The plane-of-sky velocities determined from IPS ranged from 420 ± 10 kms?1 to 520 ± 20 kms?1. IPS results reveal the presence of micro-structure within the CME front which may represent interaction between the two separate CME events. This is the first time that it has been possible to interpret IPS observations of small-scale structure within an interplanetary CME in terms of the global structure of the event

    Higher-dimensional Algebra and Topological Quantum Field Theory

    Full text link
    The study of topological quantum field theories increasingly relies upon concepts from higher-dimensional algebra such as n-categories and n-vector spaces. We review progress towards a definition of n-category suited for this purpose, and outline a program in which n-dimensional TQFTs are to be described as n-category representations. First we describe a "suspension" operation on n-categories, and hypothesize that the k-fold suspension of a weak n-category stabilizes for k >= n+2. We give evidence for this hypothesis and describe its relation to stable homotopy theory. We then propose a description of n-dimensional unitary extended TQFTs as weak n-functors from the "free stable weak n-category with duals on one object" to the n-category of "n-Hilbert spaces". We conclude by describing n-categorical generalizations of deformation quantization and the quantum double construction.Comment: 36 pages, LaTeX; this version includes all 36 figure

    EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    No full text
    International audienceA relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS) usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering

    Principal 2-bundles and their gauge 2-groups

    Full text link
    In this paper we introduce principal 2-bundles and show how they are classified by non-abelian Cech cohomology. Moreover, we show that their gauge 2-groups can be described by 2-group-valued functors, much like in classical bundle theory. Using this, we show that, under some mild requirements, these gauge 2-groups possess a natural smooth structure. In the last section we provide some explicit examples.Comment: 40 pages; v3: completely revised and extended, classification corrected, name changed, to appear in Forum Mat

    Catalysis study for space shuttle vehicle thermal protection systems

    Get PDF
    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle

    Accurate OH maser positions II. the Galactic Center region

    Full text link
    We present high spatial resolution observations of ground-state OH masers, achieved using the Australia Telescope Compact Array (ATCA). These observations were conducted towards 171 pointing centres, where OH maser candidates were identified previously in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) towards the Galactic Center region, between Galactic longitudes of 355355^{\circ} and 55^{\circ} and Galactic latitudes of 2-2^{\circ} and +2+2^{\circ}. We detect maser emission towards 162 target fields and suggest that 6 out of 9 non-detections are due to intrinsic variability. Due to the superior spatial resolution of the follow-up ATCA observations, we have identified 356 OH maser sites in the 162 of the target fields with maser detections. Almost half (161 of 356) of these maser sites have been detected for the first time in these observations. After comparing the positions of these 356 maser sites to the literature, we find that 269 (76\%) sites are associated with evolved stars (two of which are planetary nebulae), 31 (9\%) are associated with star formation, four are associated with supernova remnants and we were unable to determine the origin of the remaining 52 (15\%) sites. Unlike the pilot region (\citealt{Qie2016a}), the infrared colors of evolved star sites with symmetric maser profiles in the 1612 MHz transition do not show obvious differences compared with those of evolved star sites with asymmetric maser profiles.Comment: 24 pages, 12 figures, accepted by ApJ

    New class I methanol masers

    Full text link
    We review properties of all known collisionally pumped (class I) methanol maser series based on observations with the Australia Telescope Compact Array (ATCA) and the Mopra radio telescope. Masers at 36, 84, 44 and 95 GHz are most widespread, while 9.9, 25, 23.4 and 104 GHz masers are much rarer, tracing the most energetic shocks. A survey of many southern masers at 36 and 44 GHz suggests that these two transitions are highly complementary. The 23.4 GHz maser is a new type of rare class I methanol maser, detected only in two high-mass star-forming regions, G357.97-0.16 and G343.12-0.06, and showing a behaviour similar to 9.9, 25 and 104 GHz masers. Interferometric positions suggest that shocks responsible for class I masers could arise from a range of phenomena, not merely an outflow scenario. For example, some masers might be caused by interaction of an expanding HII region with its surrounding molecular cloud. This has implications for evolutionary sequences incorporating class I methanol masers if they appear more than once during the evolution of the star-forming region. We also make predictions for candidate maser transitions at the ALMA frequency range.Comment: 8 pages, 2 figures, to appear in proceedings for IAUS 287: Cosmic Masers - from OH to H
    corecore