39 research outputs found

    Procedural Due Process in the Discipline of Incarcerated Juveniles

    Get PDF

    Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections-an Australian perspective

    Get PDF
    Building DNA barcode databases for plants has historically been ad hoc, and often with a relatively narrow taxonomic focus. To realize the full potential of DNA barcoding for plants, and particularly its application to metabarcoding for mixed-species environmental samples, systematic sequencing of reference collections is required using an augmented set of DNA barcode loci, applied according to agreed data generation and analysis standards. The largest and most complete reference collections of plants are held in herbaria. Australia has a globally significant flora that is well sampled and expertly curated by its herbaria, coordinated through the Council of Heads of Australasian Herbaria. There exists a tremendous opportunity to provide a comprehensive and taxonomically robust reference database for plant DNA barcoding applications by undertaking coordinated and systematic sequencing of the entire flora of Australia utilizing existing herbarium material. In this paper, we review the development of DNA barcoding and metabarcoding and consider the requirements for a robust and comprehensive system. We analyzed the current availability of DNA barcode reference data for Australian plants, recommend priority taxa for database inclusion, and highlight future applications of a comprehensive metabarcoding system. We urge that large-scale and coordinated analysis of herbarium collections be undertaken to realize the promise of DNA barcoding and metabarcoding, and propose that the generation and curation of reference data should become a national investment priority

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Background: Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The 'Biomes of Australian Soil Environments' (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. Findings: BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project's data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the 'Atlas of Living Australia'. Conclusions: Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Corrected by: Erratum: Introducing BASE: The Biomes of Australian Soil Environments soil microbial diversity database [GigaScience. 5, 1, (2016) (1-11)] DOI: 10.1186/s13742-016-0126-5. In GigaScience 6(5):1, the authorship list should have included Leon Court, who was responsible for sample collection and preparation, sampling design and sequencing method design. The authors regret this omission.BACKGROUND Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. FINDINGS BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project’s data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the ‘Atlas of Living Australia’. CONCLUSIONS Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services.Andrew Bissett, Anna Fitzgerald, Thys Meintjes, Pauline M. Mele, Frank Reith, Paul G. Dennis, Martin F. Breed, Belinda Brown, Mark V. Brown, Joel Brugger, Margaret Byrne, Stefan Caddy-Retalic, Bernie Carmody, David J. Coates, Carolina Correa, Belinda C. Ferrari, Vadakattu V. S. R. Gupta, Kelly Hamonts, Asha Haslem, Philip Hugenholtz, Mirko Karan, Jason Koval, Andrew J. Lowe, Stuart Macdonald, Leanne McGrath, David Martin, Matt Morgan, Kristin I. North, Chanyarat Paungfoo-Lonhienne, Elise Pendall, Lori Phillips, Rebecca Pirzl, Jeff R. Powell, Mark A. Ragan, Susanne Schmidt, Nicole Seymour, Ian Snape, John R. Stephen, Matthew Stevens, Matt Tinning, Kristen Williams, Yun Kit Yeoh, Carla M. Zammit, and Andrew Youn

    Inclusive fitness theory and eusociality

    Get PDF

    Genetic Structure, Nestmate Recognition and Behaviour of Two Cryptic Species of the Invasive Big-Headed Ant Pheidole megacephala

    Get PDF
    info:eu-repo/semantics/publishe
    corecore