1,811 research outputs found

    Photon temporal modes: a complete framework for quantum information science

    Full text link
    Field-orthogonal temporal modes of photonic quantum states provide a new framework for quantum information science (QIS). They intrinsically span a high-dimensional Hilbert space and lend themselves to integration into existing single-mode fiber communication networks. We show that the three main requirements to construct a valid framework for QIS -- the controlled generation of resource states, the targeted and highly efficient manipulation of temporal modes and their efficient detection -- can be fulfilled with current technology. We suggest implementations of diverse QIS applications based on this complete set of building blocks.Comment: 17 pages, 13 figure

    From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides

    Full text link
    Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance single-mode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of single-photon frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary \chitwo-based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure

    Kant's philosophy of the aesthetic and the philosophy of praxis

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Association for Economic and Social Analysis.This essay seeks to reconstruct the terms for a more productive engagement with Kant than is typical within contemporary academic cultural Marxism, which sees him as the cornerstone of a bourgeois model of the aesthetic. The essay argues that, in the Critique of Judgment, the aesthetic stands in as a substitute for the missing realm of human praxis. This argument is developed in relation to Kant's concept of reflective judgment that is in turn related to a methodological shift toward inductive and analogical procedures that help Kant overcome the dualisms of the first two Critiques. This reassessment of Kant's aesthetic is further clarified by comparing it with and offering a critique of Terry Eagleton's assessment of the Kantian aesthetic as synonymous with ideology

    Integrated optical directional coupler biosensor

    No full text
    We present measurements on biomolecular binding reactions, using a new type of integrated optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+-Na+ ion-exchange in glass and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered

    Integrated optical Mach-Zehnder interferometer as simazine immunoprobe

    No full text
    Immunoassay has become a versatile tool in several fields of analytical chemistry. We describe the characterization and the application of different integrated optical channel waveguide Mach-Zehnder interferometers (MZIs) as label-free immunoprobes. The performance of the classical MZI is compared with that of a modified structure which incorporates a 3x3 coupler. Characterization of the devices demonstrates a dramatic improvement gained by using the 3x3 coupler. Two main advantages are achieved by the modified device. First, the possibility of referencing the output signal allows the elimination of signal fluctuations due to coupling and light-source instabilities. An increase of the signal-to-noise ratio by a factor of up to 10 is achieved. Secondly, the phase shift between the three outputs allows unambiguous detection with optimum sensitivity. For the detection of the herbicide simazine, the functional properties of the transducer surface are optimized by an appropriate chemical modification. Using this improved device, a simazine immunoassay has been carried out with a test midpoint of 0.3 ppb and a detection limit of approximately 0.1 ppb. The excellent performance, established manufacturing techniques and the potential for simplification and parallelization make the device attractive for further development

    Theory of noise suppression in {\Lambda}-type quantum memories by means of a cavity

    Full text link
    Quantum memories, capable of storing single photons or other quantum states of light, to be retrieved on-demand, offer a route to large-scale quantum information processing with light. A promising class of memories is based on far-off-resonant Raman absorption in ensembles of Λ\Lambda-type atoms. However at room temperature these systems exhibit unwanted four-wave mixing, which is prohibitive for applications at the single-photon level. Here we show how this noise can be suppressed by placing the storage medium inside a moderate-finesse optical cavity, thereby removing the main roadblock hindering this approach to quantum memory.Comment: 10 pages, 3 figures. This paper provides the theoretical background to our recent experimental demonstration of noise suppression in a cavity-enhanced Raman-type memory ( arXiv:1510.04625 ). See also the related paper arXiv:1511.05448, which describes numerical modelling of an atom-filled cavity. Comments welcom

    Cost effectiveness of a community based prevention and treatment of acute malnutrition programme in Mumbai slums, India

    Get PDF
    Children in slums are at high risk of acute malnutrition and death. Cost-effectiveness of community-based management of severe acute malnutrition programmes has been demonstrated previously, but there is limited evidence in the context of urban slums where programme cost structure is likely to vary tremendously. This study assessed the cost-utility of adding a community based prevention and treatment for acute malnutrition intervention to Government of India Integrated Child Development Services (ICDS) standard care for children in Mumbai slums. The intervention is delivered by community health workers in collaboration with ICDS Anganwadi community health workers. The analysis used a decision tree model to compare the costs and effects of the two options: standard ICDS services with the intervention and prevention versus standard ICDS services alone. The model used outcome and cost data from the Society for Nutrition, Education & Health Action's Child Health and Nutrition programme in Mumbai slums, which delivered services to 12,362 children over one year from 2013 to 2014. An activity-based cost model was used, with calculated costs based on programme financial records and key informant interviews. Cost data were coupled with programme effectiveness data to estimate disability adjusted life years (DALYs) averted. The community based prevention and treatment programme averted 15,016 DALYs (95% Uncertainty Interval [UI]: 12,246-17,843) at an estimated cost of $23 per DALY averted (95%UI:19-28) and was thus highly cost-effective. This study shows that ICDS Anganwadi community health workers can work efficiently with community health workers to increase the prevention and treatment coverage in slums in India and can lead to policy recommendations at the state, and potentially the national level, to promote such programmes in Indian slums as a cost-effective approach to tackling moderate and severe acute malnutrition
    corecore