6 research outputs found

    Fonctions de la 2’-O-mĂ©thyltransfĂ©rase FTSJ1 dans la rĂ©gulation de l'expression des gĂšnes et le dĂ©veloppement neuronal

    No full text
    RNAs of all the domains of life carry chemical modifications. Extensive studies over the last decades linked the loss of RNA modification enzymes to several pathologies, notably, ones related to the nervous system. During my PhD, I contributed to the understanding of the functions of FTSJ1, a Trm7 family enzyme responsible for tRNA ribose methylation of two nucleotides of the anticodon loop including the Wobble (34th) position. FTSJ1 loss of function causes intellectual disability, however, the mechanisms underlying this condition remain elusive. My colleagues previously identified the orthologs of FTSJ1 in Drosophila as regulators of RNA interference pathways. During my PhD, I contributed to the characterization of a new FTSJ1 pathological variant, and to the study of transcriptomes of patient derived lymphocytes. I also identified morphological defects associated with the loss of FTSJ1 in cultured human immature neurons. Similarly, the Drosophila model lacking the orthologs of FTSJ1 exhibits similar morphological defects in the neuromuscular junctions. Cognitive assessments exhibited drastically reduced long-term memory in all mutant combinations. Given the primary function of tRNAs in translation, I lastly conducted a transcriptome wide profiling of ribosome footprints on patient derived cell lines, together with an RNAseq analysis. A gene ontology analysis revealed a number of deregulated genes at the translational level, primarily involved in vocal and imitative learning. Overall, these results show a substantial regulation of brain morphogenesis genes attributed to FTSJ1, as well as morphological defects altering cultured neural cells, but also in the Drosophila model lacking FTSJ1. As a perspective, exploitation of new ribosome profiling datasets, with an emphasis on codon specific signatures on translation efficiency by tRNA substrates of FTSJ1 could lead to a better understanding of the mechanisms underlying FTSJ1 related intellectual disability.Dans tous les domaines du vivant, la majoritĂ© des ARN de toutes les catĂ©gories sont chimiquement modifiĂ©s. De nombreuses Ă©tudes au cours des derniĂšres dĂ©cennies ont permis de montrer que la perte des enzymes de modification des ARN sont Ă  l’origine de nombreuses pathologies, notamment liĂ©es au systĂšme nerveux. Au cours de ma thĂšse, j'ai contribuĂ© Ă  la comprĂ©hension des fonctions de FTSJ1, une enzyme de la famille Trm7 responsable de la 2’-O-mĂ©thylation des ARNt sur deux nuclĂ©otides de la boucle anticodon dont le Wobble (nuclĂ©otide 34). La perte de fonction de FTSJ1 est Ă  l'origine d'une dĂ©ficience intellectuelle, cependant, les mĂ©canismes molĂ©culaires sous-jacents restent incompris. Mes collĂšgues de laboratoire ont prĂ©cĂ©demment identifiĂ© les orthologues de FTSJ1 chez la drosophile comme rĂ©gulateurs des voies d’ARN interfĂ©rence. Au cours de ma thĂšse, j'ai contribuĂ© Ă  la caractĂ©risation d'un nouveau variant pathologique de FTSJ1 et Ă  l'Ă©tude des transcriptomes de lymphocytes dĂ©rivĂ©s de patients atteints de dĂ©ficience intellectuelle. J'ai Ă©galement identifiĂ© des dĂ©fauts morphologiques associĂ©s Ă  l’inhibition de FTSJ1 dans des neurones immatures humains en culture. De mĂȘme, le modĂšle drosophile dĂ©pourvu des orthologues de FTSJ1 prĂ©sente des dĂ©fauts morphologiques similaires au niveau des jonctions neuromusculaires. Des Ă©valuations cognitives ont montrĂ© une rĂ©duction drastique de la mĂ©moire Ă  long terme chez tous les mutants. Étant donnĂ© la fonction principale des ARNt dans la traduction, j'ai enfin rĂ©alisĂ© un ribosome profiling sur les lignĂ©es cellulaires dĂ©rivĂ©es de patients, ainsi qu'une analyse RNAseq. Une analyse de gene ontology a rĂ©vĂ©lĂ© un nombre de gĂšnes dĂ©rĂ©gulĂ©s au niveau traductionnel, principalement impliquĂ©s dans l'apprentissage vocal et imitatif. Dans l'ensemble, ces rĂ©sultats montrent une rĂ©gulation des gĂšnes de la morphogenĂšse cĂ©rĂ©brale attribuĂ©s Ă  FTSJ1, ainsi que des dĂ©fauts morphologiques altĂ©rant les cellules neuronales en culture, mais aussi dans le modĂšle de drosophile mutĂ© dans FTSJ1. En perspective, il serait utile d'exploiter ces nouveaux jeux de donnĂ©es de ribosome profiling chez l’homme et la drosophile, en mettant l'accent sur les signatures spĂ©cifiques des codons et sur l'efficacitĂ© de la traduction par les ARNt substrats de FTSJ1. Ces rĂ©sultats pourraient conduire Ă  une meilleure comprĂ©hension des mĂ©canismes Ă  l’origine de la dĂ©ficience intellectuelle liĂ©e Ă  FTSJ1

    Fonctions de la 2’-O-mĂ©thyltransfĂ©rase FTSJ1 dans la rĂ©gulation de l'expression des gĂšnes et le dĂ©veloppement neuronal

    No full text
    Dans tous les domaines du vivant, la majoritĂ© des ARN de toutes les catĂ©gories sont chimiquement modifiĂ©s. De nombreuses Ă©tudes au cours des derniĂšres dĂ©cennies ont permis de montrer que la perte des enzymes de modification des ARN sont Ă  l’origine de nombreuses pathologies, notamment liĂ©es au systĂšme nerveux. Au cours de ma thĂšse, j'ai contribuĂ© Ă  la comprĂ©hension des fonctions de FTSJ1, une enzyme de la famille Trm7 responsable de la 2’-O-mĂ©thylation des ARNt sur deux nuclĂ©otides de la boucle anticodon dont le Wobble (nuclĂ©otide 34). La perte de fonction de FTSJ1 est Ă  l'origine d'une dĂ©ficience intellectuelle, cependant, les mĂ©canismes molĂ©culaires sous-jacents restent incompris. Mes collĂšgues de laboratoire ont prĂ©cĂ©demment identifiĂ© les orthologues de FTSJ1 chez la drosophile comme rĂ©gulateurs des voies d’ARN interfĂ©rence. Au cours de ma thĂšse, j'ai contribuĂ© Ă  la caractĂ©risation d'un nouveau variant pathologique de FTSJ1 et Ă  l'Ă©tude des transcriptomes de lymphocytes dĂ©rivĂ©s de patients atteints de dĂ©ficience intellectuelle. J'ai Ă©galement identifiĂ© des dĂ©fauts morphologiques associĂ©s Ă  l’inhibition de FTSJ1 dans des neurones immatures humains en culture. De mĂȘme, le modĂšle drosophile dĂ©pourvu des orthologues de FTSJ1 prĂ©sente des dĂ©fauts morphologiques similaires au niveau des jonctions neuromusculaires. Des Ă©valuations cognitives ont montrĂ© une rĂ©duction drastique de la mĂ©moire Ă  long terme chez tous les mutants. Étant donnĂ© la fonction principale des ARNt dans la traduction, j'ai enfin rĂ©alisĂ© un ribosome profiling sur les lignĂ©es cellulaires dĂ©rivĂ©es de patients, ainsi qu'une analyse RNAseq. Une analyse de gene ontology a rĂ©vĂ©lĂ© un nombre de gĂšnes dĂ©rĂ©gulĂ©s au niveau traductionnel, principalement impliquĂ©s dans l'apprentissage vocal et imitatif. Dans l'ensemble, ces rĂ©sultats montrent une rĂ©gulation des gĂšnes de la morphogenĂšse cĂ©rĂ©brale attribuĂ©s Ă  FTSJ1, ainsi que des dĂ©fauts morphologiques altĂ©rant les cellules neuronales en culture, mais aussi dans le modĂšle de drosophile mutĂ© dans FTSJ1. En perspective, il serait utile d'exploiter ces nouveaux jeux de donnĂ©es de ribosome profiling chez l’homme et la drosophile, en mettant l'accent sur les signatures spĂ©cifiques des codons et sur l'efficacitĂ© de la traduction par les ARNt substrats de FTSJ1. Ces rĂ©sultats pourraient conduire Ă  une meilleure comprĂ©hension des mĂ©canismes Ă  l’origine de la dĂ©ficience intellectuelle liĂ©e Ă  FTSJ1.RNAs of all the domains of life carry chemical modifications. Extensive studies over the last decades linked the loss of RNA modification enzymes to several pathologies, notably, ones related to the nervous system. During my PhD, I contributed to the understanding of the functions of FTSJ1, a Trm7 family enzyme responsible for tRNA ribose methylation of two nucleotides of the anticodon loop including the Wobble (34th) position. FTSJ1 loss of function causes intellectual disability, however, the mechanisms underlying this condition remain elusive. My colleagues previously identified the orthologs of FTSJ1 in Drosophila as regulators of RNA interference pathways. During my PhD, I contributed to the characterization of a new FTSJ1 pathological variant, and to the study of transcriptomes of patient derived lymphocytes. I also identified morphological defects associated with the loss of FTSJ1 in cultured human immature neurons. Similarly, the Drosophila model lacking the orthologs of FTSJ1 exhibits similar morphological defects in the neuromuscular junctions. Cognitive assessments exhibited drastically reduced long-term memory in all mutant combinations. Given the primary function of tRNAs in translation, I lastly conducted a transcriptome wide profiling of ribosome footprints on patient derived cell lines, together with an RNAseq analysis. A gene ontology analysis revealed a number of deregulated genes at the translational level, primarily involved in vocal and imitative learning. Overall, these results show a substantial regulation of brain morphogenesis genes attributed to FTSJ1, as well as morphological defects altering cultured neural cells, but also in the Drosophila model lacking FTSJ1. As a perspective, exploitation of new ribosome profiling datasets, with an emphasis on codon specific signatures on translation efficiency by tRNA substrates of FTSJ1 could lead to a better understanding of the mechanisms underlying FTSJ1 related intellectual disability

    Smurfness‐based two‐phase model of ageing helps deconvolve the ageing transcriptional signature

    No full text
    International audienceAgeing is characterised at the molecular level by six transcriptional ‘hallmarks of ageing’, that are commonly described as progressively affected as time passes. By contrast, the ‘Smurf’ assay separates high‐and‐constant‐mortality risk individuals from healthy, zero‐mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non‐Smurf individuals preceding the other five hallmarks of ageing that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro‐longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing

    The Non-Coding RNA Journal Club: Highlights on Recent Papers—10

    Get PDF
    International audienceWe are delighted to share with you our seventh Journal Club and highlight some of the most interesting papers published recently. We hope to keep you up-to-date with non-coding RNA research works that are outside your study area. The Non-Coding RNA Scientific Board wishes you an exciting and fruitful read

    tRNA 2â€Č-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila

    Get PDF
    International audience2'-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways
    corecore