9 research outputs found

    A two step synthesis of a key unit B precursor of cryptophycins by asymmetric hydrogenation

    No full text
    A novel highly enantioselective two step access to a unit B precursor of cryptophycins in good yields from commercially available starting materials has been developed. The key step is an asymmetric hydrogenation using the commercially available [(COD)Rh-(R,R)-Et-DuPhos]BF4 catalyst. The synthetic route provides the advantage of less synthetic steps, proceeds with high yields and enantioselectivity, and avoids hazardous reaction conditions

    Plants control soil gas exchanges possibly via mucilage

    No full text
    Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying.Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations.Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process.Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying.Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil

    Plants control soil gas exchanges possibly via

    No full text
    Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying.Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations.Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process.Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying.Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil

    A fault-based probabilistic seismic hazard model for Lebanon, controlling parameters and hazard levels

    No full text
    International audienceThe present work develops a comprehensive probabilistic seismic hazard study for Lebanon, a country prone to a high seismic hazard since it is located along the Levant fault system. The historical seismicity has documented devastating earthquakes which have struck this area. Contrarily, the instrumental period is typical of a low-to-moderate seismicity region. The source model built is made of a smoothed seismicity earthquake forecast based on the Lebanese instrumental catalog, combined with a fault model including major and best-characterized faults in the area. Earthquake frequencies on faults are inferred from geological as well as geodetic slip rates. Uncertainties at every step are tracked and a sensitivity study is led to identify which parameters and decisions most influence hazard estimates. The results demonstrate that the choice of the recurrence model, exponential or characteristic, impacts the most the hazard, followed by the uncertainty on the slip rate, on the maximum magnitude that may break faults, and on the minimum magnitude applied to faults. At return periods larger than or equal to 475 years, the hazard in Lebanon is fully controlled by the sources on faults, and the off-fault model has a negligible contribution. We establish a source model logic tree populated with the key parameters, and combine this logic tree with three ground-motion models (GMMs) potentially adapted to the Levant region. A specific study is led in Beirut, located on the hanging-wall of the Mount Lebanon fault to understand where the contributions come from in terms of magnitudes, distances and sources. Running hazard calculations based on the logic tree, distributions of hazard estimates are obtained for selected sites, as well as seismic hazard maps at the scale of the country. Considering the PGA at 475 years of return period, mean hazard values found are larger than 0.3 g for sites within a distance of 20-30 km from the main strand of the Levant Fault, as well as in the coastal region in-between Saida and Tripoli (≥ 0.4 g considering the 84th percentile). The study provides detailed information on the hazard levels to expect in Lebanon, with the associated uncertainties, constituting a solid basis that may help taking decisions in the perspective of future updates of the Lebanese building code

    Microhydrological Niches in Soils: How Mucilage and EPS Alter the Biophysical Properties of the Rhizosphere and Other Biological Hotspots

    Get PDF
    Plant roots and bacteria are capable of buffering erratic fluctuations of water content in their local soil environment by releasing a diverse, highly polymeric blend of substances (e.g. extracellular polymeric substances [EPS] and mucilage). Although this concept is well accepted, the physical mechanisms by which EPS and mucilage interact with the soil matrix and determine the soil water dynamics remain unclear. High-resolution X-ray computed tomography revealed that upon drying in porous media, mucilage (from maize [Zea mays L.] roots) and EPS (from intact biocrusts) form filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, these mucilage and EPS structures connecting soil particles did not break up upon drying, which is explained by the high viscosity and low surface tension of EPS and mucilage. Measurements of water retention and evaporation with soils mixed with seed mucilage show how these one- and two-dimensional pore-scale structures affect macroscopic hydraulic properties (i.e., they enhance water retention, preserve the continuity of the liquid phase in drying soils, and decrease vapor diffusivity and local drying rates). In conclusion, we propose that the release of viscous polymeric substances and the consequent creation of a network bridging the soil pore space represent a universal strategy of plants and bacteria to engineer their own soil microhydrological niches where stable conditions for life are preserved.peerReviewe

    The trivalent copper complex of a conjugated bis-dithiocarbazate schiff base: stabilization of Cu in three different oxidation states

    No full text
    The new tribasic N2S2 ligand H3ttfasbz has been synthesized by condensation of 4-thenoyl 2,2,2-trifluoroacetone and S-benzyl dithiocarbazate. On complexation with copper(II) acetate, spontaneous oxidation to the CuIII oxidation state is observed, and the complex [Cu(ttfasbz)] has been isolated and characterized structurally. Reduction to the EPR active CuII analogue has been achieved chemically and also electrochemically, and in both cases, the process is totally reversible. The CuIII/II redox potential of the complex is remarkably low and similar to that of the ferrocenium/ferrocene couple. Further reduction to the formally monovalent (d10) dianion [CuI(ttfasbz)]2- may be achieved electrochemically. Computational chemistry demonstrates that the three redox states [Cu(ttfasbz)], [Cu(ttfasbz)]-, and [Cu(ttfasbz)]2- are truly CuIII, CuII, and CuI complexes, respectively, and the potentially noninnocent ligand does not undergo any redox reactions
    corecore