31 research outputs found

    Modelling the effect of the Ecodesign and Labelling directives – Bottom-up analysis of EU-27 residential electricity use

    Get PDF
    The Ecodesign and Labelling directives are key policy measures to increase energy efficiency in Europe. In view of the extension of Ecodesign and Labelling to further products as well as the revision of the current implementing directives, it is essential to evaluate the potential energy savings, takin g into account different paths of technological development and diffusion. Our study uses bottom - up modelling to evaluate the long - term saving potentials of Ecodesign and Label ling for residential appliances (including large appliances, cooking and ICT), lighting and air conditioning. The household end - uses that are affected by the legislation are implemented in the model in a disaggregated way. The model is designed as a vintage stock approach and based on the simulation of consumer activities as well as technological trajectories. We model the electricity demand of household end - uses in the EU - 27 by country and compare various scenarios. Our Reference Scenario reflects the electricity demand of household end - uses without any policy measures implemented after 2008. Our current Policy Scenario includes all implementing directives that are currently in force and assumes that the sensitivity of consumers to the total cost of ownership remains at the currently witnessed level. Finally, our LLCC Scenario explores the potential energy savings assuming that consumers choose the economically favourable options considering the total cost of ownership

    Atom Counting in Expanding Ultracold Clouds

    Get PDF
    We study the counting statistics of ultracold bosonic atoms that are released from an optical lattice. We show that the counting probability distribution of the atoms collected at a detector located far away from the optical lattice can be used as a method to infer the properties of the initially trapped states. We consider initial superfluid and insulating states with different occupation patterns. We analyze how the correlations between the initially trapped modes that develop during the expansion in the gravitational field are reflected in the counting distribution. We find that for detectors that are large compared to the size of the expanded wave function, the long-range correlations of the initial states can be distinguished by observing the counting statistics. We consider counting at one detector, as well as the joint probability distribution of counting particles at two detectors. We show that using detectors that are small compared to the size of the expanded wave function, insulating states with different occupation patterns, as well as supersolid states with different density distributions can be distinguished

    Fermion- and spin-counting in strongly correlated systems in and out of thermal equilibrium

    Get PDF
    Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field, and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations, and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.Comment: 10 pages, 7 figure

    Trapped ion chain as a neural network

    Full text link
    We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced long range interactions. Such models permit to store information distributed over the whole system. The storage capacity of such network, which depends on the phonon spectrum of the system, can be controlled by changing the external trapping potential and/or by applying longitudinal local magnetic fields. The system properties suggest the possibility of implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure

    Error-Resistant Distributed Quantum Computation in Trapped Ion Chain

    Full text link
    We consider experimentally feasible chains of trapped ions with pseudo-spin 1/2, and find models that can potentially be used to implement error-resistant quantum computation. Similar in spirit to classical neural networks, the error-resistance of the system is achieved by encoding the qubits distributed over the whole system. We therefore call our system a ''quantum neural network'', and present a ''quantum neural network model of quantum computation''. Qubits are encoded in a few quasi-degenerated low energy levels of the whole system, separated by a large gap from the excited states, and large energy barriers between themselves. We investigate protocols for implementing a universal set of quantum logic gates in the system, by adiabatic passage of a few low-lying energy levels of the whole system. Naturally appearing and potentially dangerous distributed noise in the system leaves the fidelity of the computation virtually unchanged, if it is not too strong. The computation is also naturally resilient to local perturbations of the spins.Comment: 10 pages, 7 figures, RevTeX4; v2: another noise model analysed, published versio

    Particle Counting Statistics of Time and Space Dependent Fields

    Get PDF
    The counting statistics give insight into the properties of quantum states of light and other quantum states of matter such as ultracold atoms or electrons. The theoretical description of photon counting was derived in the 1960s and was extended to massive particles more recently. Typically, the interaction between each particle and the detector is assumed to be limited to short time intervals, and the probability of counting particles in one interval is independent of the measurements in previous intervals. There has been some effort to describe particle counting as a continuous measurement, where the detector and the field to be counted interact continuously. However, no general formula applicable to any time and space dependent field has been derived so far. In our work, we derive a fully time and space dependent description of the counting process for linear quantum many-body systems, taking into account the back-action of the detector on the field. We apply our formalism to an expanding Bose-Einstein condensate of ultracold atoms, and show that it describes the process correctly, whereas the standard approach gives unphysical results in some limits. The example illustrates that in certain situations, the back-action of the detector cannot be neglected and has to be included in the description

    Building a Common Support Framework in Differing Realities—Conditions for Renewable Energy Communities in Germany and Bulgaria

    No full text
    The revised EU Renewable Energy Directive first introduced renewable energy communities into the EU policy framework and requires Member States to implement a support framework for them. Given the broad scientific evidence showing the benefits of community energy for a just energy transition, a successful implementation across all Member States is essential. However, the preconditions for developing support frameworks differ largely between EU nations, as some countries have long-term experiences with supporting renewable energy communities (i.e., Germany and Denmark), while in other Member States, renewable energy communities are notably non-existent (i.e., Eastern European nations). With the purpose of providing scientific evidence to support the development of a policy framework for renewable energy communities in Eastern European Member States, this article compares key factors for the development of such communities in Bulgaria and Germany, combining a literature review with expert interviews to collect primary information on Bulgaria. A country analysis puts these factors into the contexts of both countries, while a cross-country comparison demonstrates that there are significant gaps in the support framework of Bulgaria, although these gaps are, to a lesser extent, also present in Germany. We discuss these shortcomings, derive policy recommendations and identify further research needs
    corecore