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Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium
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Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to
monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which
is equivalent to an anisotropic quantum XY chain in a transverse field and can be realized with cold fermionic
atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal
fluctuations and during its thermalization when the system is coupled to a heat bath. At zero temperature, the
quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of
the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find
that the same quantities may be used to scan the dynamics during the thermalization of the system.
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I. INTRODUCTION

In the past decade it has become clear that the most
important challenges of the physics of ultracold atoms overlap
essentially with those of condensed matter physics and concern
strongly correlated quantum states of many-body systems. In
fact, ultracold fermionic and bosonic atoms in optical lattices
mimic strongly correlated systems, which can be perfectly
described by various Hubbard or spin models with rich phase
diagrams [1].

Amazingly, ultacold atomic physics may address questions
concerning both static and dynamical properties of such sys-
tems. In the context of statics, the goal is to quantum engineer,
that is, to prepare, or reach interesting quantum phases or
states, and then to detect their properties. Many examples of
such exotic phases pertaining to quantum magnetism based
on superexchange interactions are now within experimental
reach [2,3]. Also, the signatures of itinerant ferromagnetism in
the absence of the lattice structure have recently been reported
for a system of spin-1/2 fermions [4].

Despite the progress of experimental techniques, the prepa-
ration and detection of quantum magnetism is always obscured
by the unavoidable noise and thermal effects. These are
particularly important in low-dimensional systems, especially
in one dimension, where no long-range order can exist at
T > 0. It is therefore highly desirable to design detection
methods that allow the observation of the signatures of strong
correlations and quantum phase transitions (QFTs) at T > 0.
The first goal of this paper is to demonstrate that atom counting
may be used to detect signatures of QFTs at T > 0. To this aim
we analyze a paradigmatic example of a strongly correlated
system: a system of fermions in a one-dimensional (1D) optical
lattice.

*sibylle.braungardt@icfo.es

Remarkably long time scales of ultracold-atom experiments
allow monitoring the dynamics of the system directly. In
the context of dynamics, one goal is to observe the time
evolution of the system under some perturbation as the
system approaches a stationary state. In this context various
fundamental questions can be addressed. For instance, does the
system, which can be very well regarded as closed, thermalize
after an initial perturbation (sudden quench) [5–10]? What
is the difference between thermal and nonthermal dynamics?
What kinds of interesting dynamical processes involving a
coupling to a specially designed heat bath can be realized?
Can one realize state engineering using open-system dynamics
[11]? The second goal of this paper is thus to study atom
counting during dynamic evolution. In particular, we compute
the atom counting distribution as a function of time when
the analyzed 1D system of fermions approaches the quantum
Boltzmann-Gibbs thermal equilibrium state at certain T > 0.
We show how the thermalization process can be monitored
by observing the cumulants of the counting distribution. In
principle, the method allows distinguishing thermal dynamics
from nonthermal ones.

Counting of particles is one of the most important
techniques for characterizing quantum mechanical states of
many-body systems. Photon counting [12] allows for the full
characterization of quantum light sources. More recently, the
counting statistics of electrons has been used to characterize
mesoscopic devices [13–19]. In both cases mentioned, the
particles considered are noninteracting, or practically so. In
this paper, in contrast, we consider strongly correlated atomic
systems [20]. Counting statistics of atoms has been suggested
as a technique to detect and distinguish various quantum
phases of spin and fermionic systems [21–25]. Atom counting
can be realized in several manners (for early experiments,
see [26]). One method concerns metastable atoms, such as
helium [27], where the atoms are released from the trap,
so counting is preceded by essentially ballistic expansion of
the atomic wave functions. With the recent development of
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high-resolution optical imaging systems, single atoms can be
detected with near-unit fidelity on individual sites of an optical
lattice [28,29]. This makes available the counting distributions
of atoms in situ in the lattice. Spin counting techniques [30]
allow for the measurement of the average and fluctuations of
the spin number also in situ in cold atomic samples. These
techniques can be extended to account for spatial resolution
[31] and give access to the Fourier components of the spin
distribution [32]. With the help of superlattice configurations,
one may address the atoms locally, probing, for example,
every second site [31]. In this work we focus on in situ
methods, leaving the discussion of the interplay of atomic
cloud expansion and atom counting to a separate publication.

Despite the fact that under experimental conditions noise
(thermal or nonthermal) is always present, so far atom counting
has been mainly considered at zero temperature and in
the absence of nonthermal noise [21–25]. In particular, in
Ref. [24], we used atom counting theory to study a system
of fermions in a 1D optical lattice. We have shown that the
critical behavior of the system, in particular, the formation of
fermionic pairs, is reflected in the cumulants of the counting
distribution. Here, we consider the counting distribution of the
same fermionic system, but we now take into account the effect
of thermal noise. We consider both the effect of temperature
when the system is at equilibrium and the thermalization when
the system is coupled to a model heat bath. Fermionic pair
breaking induced by thermal noise is clearly reflected in the
counting distribution function. We also find that the signatures
of the crossover between different phases remain visible at
low temperatures, and we show how they fade out as the
temperature increases.

The paper is organized as follows. In Sec. II, we provide a
description of the fermion and spin system that we consider. In
Sec. III we review the counting theory for a fermionic system
and show how the counting distribution can be obtained from a
simple recursive formula. Details of how to derive the counting
distribution in terms of a generating function are shown in
the Appendix. In Sec. IV, we study the counting statistics of
the system at thermal equilibrium and nonzero temperature.
First, in Sec. IV A, we present the counting distribution at zero
temperature for reference. Then, in Sec. IV B, we analyze how
thermal noise affects the atom number distribution, especially
in the vicinity of the quantum phase transition or, more
accurately, crossover. In Sec. V, we calculate the atom number
distribution during a model thermalization process, in which
the system is coupled to a heat bath via the exchange of
collective quasiparticles. Such couplings and the resulting
open-system dynamics are not, strictly speaking, local. How-
ever, in Sec. V B we analyze the nature of these couplings
more closely and show that they can be well approximated by
a physically reasonable model of local exchange of atoms be-
tween the system and the reservoir. We summarize our results
in Sec. VI.

II. FERMI GAS IN A 1D OPTICAL LATTICE

Quantum degenerate fermionic atoms trapped in optical
lattices [33] may become superfluid if there are attractive
interactions between atoms trapped in two different hyperfine

states [34]. Attractive fermions form pairs analogous to
Cooper pairs in superconductors. A one-component system of
fermions trapped in the same hyperfine state may also become
superfluid, though not in an s-wave configuration. Such a
system, in the 1D case, can be described by the following
Hamiltonian (h̄ = 1):

Ĥ = −J

N∑
j=1

(ĉ†j ĉj+1 + γ ĉ
†
j ĉ

†
j+1 + H.c. − 2gĉ

†
j ĉj + g).

(1)

Here, ĉ
†
j denotes the creation of a fermion on site j , N is

the number of sites, J is the energy associated with fermion
tunneling to nearest-neighbor lattice sites, g is proportional
to the chemical potential of the system, and γ accounts
for the formation of pairs between consecutive sites. A Fourier
transform shows that this corresponds to the formation and
destruction of pairs of opposite momentum (see [20] and [35]).
A Bogoliubov transformation diagonalizes the Hamiltonian in
Eq. (1), which can be written up to a zero energy shift in terms
of the quasiparticle excitations d̂k ,

Ĥ =
N/2∑
k=1

Ĥk =
N/2∑
k=1

Ekn̂
d
k , (2)

where

n̂d
k = d̂

†
k d̂k + d̂

†
−kd̂−k, (3)

d̂k = ukĉk − ivkĉ
†
−k, d

†
k = ukĉ

†
k + ivkĉ−k, (4)

ĉ
†
k = 1√

N

N∑
j=1

exp(ij�k)ĉ†j , (5)

uk = cos
θk

2
, vk = sin

θk

2
, (6)

Ek = J
√

(cos �k − g)2 + γ 2 sin2 �k, (7)

tan θk = γ sin �k

cos �k − g
, (8)

and �k = 2πk/N . In order to recover the Hamiltonian, (1),
for (cos �k − g) < 0 the solution of Eq. (8) is taken from the
(π

2 , 3π
2 ) branch of the tangent, whereas for (cos �k − g) < 0 it

is taken from the (−π
2 , π

2 ) branch.
In the noninteracting case, one can clearly see that there are

two different regimes. For γ = 0 the momentum space rep-
resentation of Eq. (1), Ĥk = 2[cos(�k) − g]ĉ†kĉk , is recovered
up to a constant term. For a small transverse field g � 1, the
energy gap of the particles involved is positive. For a high trans-
verse field g � 1, it is negative and it vanishes at the critical
point g = 1. It can be seen from Eq. (6) that the Bogoliubov
coefficients u2

k and v2
k change their roles at the phase transition

such that, on one side of the critical point, the number operator
of the quasiparticles d̂

†
k d̂k corresponds to ĉ

†
kĉk , whereas on the

other side it corresponds to ĉk ĉ
†
k . Finite interactions γ between

the fermions lead to the formation of fermionic pairs between
consecutive sites but the main character of the phase transition
at g = 1 remains essentially unchanged.
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Quantum phase transitions are only well defined at zero
temperature. Thermal fluctuations lead to an exponential decay
of the order parameter, and only a crossover between phases
remains. For the system under consideration, the critical point
g = 1 at zero temperature extends for finite T to a quantum
critical crossover region where the energy gap is smaller than
the thermal fluctuations, that is, |J (1 − g)| < kBT [20].

The system considered here [Eq. (1)] is also interesting
because it is equivalent to the anisotropic quantum XY spin
model [35]. Using the Jordan-Wigner transformation [20,36],
one can transform it into

Hxy = −J

N∑
j=1

[
(1 + γ )Sx

j Sx
j+1 + (1 − γ )Sy

j S
y

j+1 + gSz
j

]
,

(9)

where Sx
j ,S

y

j , and Sz
j are the spin 1/2 operators at site j , J is

the coupling strength, 0 < γ � 1 is the anisotropy parameter,
and g is the transverse field. The case γ = 1 corresponds to
the Ising model in a transverse field. For γ = 0, the system
corresponds to the isotropic XY model or XX model. For this
value, the Jordan-Wigner transformation is ill defined and one
cannot map it to the fermionic Hamiltonian in Eq. (1). We study
the phase transition with respect to the parameter g, where the
extreme cases g = 0 and g = ∞, correspond to systems with
no external field and with no interactions, respectively. The
phase transition between states with different orientations of
the magnetization takes place at g = 1. For small transverse
fields g � 1, the ground state hasuantum magnetic long-range
order and the excitations correspond to kinks in domain walls.
For high transverse fields g � 1, the system is in a quantum
paramagnetic state.

III. FERMION COUNTING STATISTICS

Before presenting our calculations of the counting dis-
tribution for a system of fermions at finite temperature,
we would like to recall some basics of photon and atom
counting statistics. The theoretical analysis of the counting
process of photons registered on a photodetector was first
developed in [37]. In this process, a photon is annihilated and a
photoelectron is emitted. This photoemission triggers a further
ionization process, leading to a macroscopic current that is
then measured. This theoretical framework can be extended
for counting atoms directly using multichannel plates or in
situ counting techniques, for both bosons and fermions [38].
In the detection process, the particles are absorbed by the
detector. The counting distribution can thus be derived from
the master equation that describes the interaction between the
system and the detector with efficiency ε (see the Appendix).
The probability p(m) of counting m particles is given by

p(m) = (−1)m

m!

dm

dλm
Q

∣∣∣
λ=1

, (10)

where we have used the generating function

Q(λ) = Tr(ρ : e−λI :). (11)

Assuming that the counting process is much faster than
the dynamics of the system, the time-independent intensity
registered at the detector is I = κ

∑N
j=1 ĉ

†
j ĉj , where κ =

1 − exp(−ετ ) and τ denotes the detection exposure time.
Using the anticommutation relations for fermions, we obtain

Q(λ) = Tr

{
ρ

N/2∏
k=1

(1 − λκĉ
†
kĉk)(1 − λκĉ

†
−kĉ−k)

}
. (12)

The dynamics mix only k and −k fermionic excitations d̂k , so
that we can separate the density matrix ρ = ∏

k ρk and neglect
the terms that do not conserve the number of excitations, to
obtain

Q(λ) =
N/2∏
k=1

(1 − λκAk + λ2κ2Bk), (13)

where

Ak = Tr
{
ρk

[
u2

kn̂
d
k + v2

k (d̂kd̂
†
k + d̂−kd̂

†
−k)

]}
,

Bk = Tr
{
ρk

[
u2

kd̂
†
k d̂kd̂

†
−kd̂−k + v2

k d̂−kd̂
†
−kd̂kd̂

†
k

]}
. (14)

We use Eq. (10) to calculate the counting distribution from the
generating function in Eq. (13) and obtain

p(m) = (−1)m

m!

dm

dλm

[
N/2∏
k=1

(1 − λκAk + λ2κ2Bk)

]
λ=1

. (15)

Using the generalized Leibniz rule, we derive [24] a recurrence
relation to calculate the counting distribution of a system with
M + 1 pairs of modes from that of a system with M pairs:

p(m,M + 1) =
2∑

i=0

Pip(m − i,M). (16)

Here Pi denotes the probability of detecting i particles in the
two modes M + 1 and −(M + 1), which is given by

P0 = 1 − κAM+1 + κ2BM+1,

P1 = κAM+1 − 2κ2BM+1, (17)

P2 = 1 − P0 − P1.

Using the recursive relation Eq. (16), the counting distribution
for an arbitrarily large system can be calculated from that
of a two-mode system. We thus only need to calculate the
expressions Ak and Bk in Eq. (14) and use Eqs. (16) and (17)
to obtain the counting distribution of the fermionic system in
Eq. (1) with an arbitrary number of sites.

As already mentioned, the fermionic operators are related
to spin operators by the Jordan-Wigner transform. The fermion
counting distribution is therefore, up to a constant, equivalent
to the counting distribution of the spins in the z direction
in the transverse XY model in Eq. (9). We can thus use
the preceding to calculate the counting distributions of the
anisotropic XY model in a transverse field for a system of any
size N . Experimentally, the spin number distribution and its
fluctuations can be inferred from the expectation value and
fluctuations of the polarization of the light that has interacted
with a cold-atomic sample [30].

IV. COUNTING STATISTICS IN THE PRESENCE
OF THERMAL NOISE

In real counting experiments, there are typically a variety
of noise sources that may affect the system. In this section
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we study the influence of thermal noise on the counting
distributions of the 1D fermi system in Eq. (1). We analyze
the counting distributions along the crossover between the
different regions of the phase diagram. We first review
the results for the zero-temperature case and then turn our
discussion to the case with thermal fluctuations.

A. Counting statistics at zero temperature

At zero temperature, the ground state of the system
Hamiltonian Eq. (2) is the vacuum state of d̂k excitations.
Expressions Ak and Bk in Eq. (14) are thus given by

Ak = 2κv2
k ,

Bk = κ2v2
k . (18)

Inserting these into the equations for the two-mode probabili-
ties Pi in Eq. (17), we obtain the probabilities of finding zero,
one, or two particles in a system with one pair of modes:

p(0,1) = 1 − 2κ
(
v2

1 + κ2v2
1

)
,

p(1,1) = 2κv2
1 − 2κ2v2

1, (19)

p(2,1) = κ2v2
1 .

The counting distribution can now be calculated for an
arbitrary number of modes using the recurrence relation,
Eq. (16). In Fig. 1(a), we plot the counting probability dis-
tribution for the Ising model (γ = 1) at zero temperature with
no transverse field (g = 0) and perfect detection efficiency.
We consider a system with zero excitations and N = 1000
sites. The probability distribution is centered around a mean
value m̄ = 500 = N/2 particles and its standard deviation is
σ = 50, such that σ 2 = N/4. As observed in [24], the pairing
that is present in the system Hamiltonian, Eq. (1), only allows
for the detection of pairs of particles and thus leads to a zero
probability of finding an odd number of particles. In [24],
this splitting of the counting distribution between even and
odd values was shown to disappear for decreasing detection
efficiency κ . In Sec. IV B, we use this feature of the counting
distribution to study the influence of thermal fluctuations on
the stability of the fermion pairs.

In Fig. 1(b), we plot the mean m̄/N and variance σ 2/N of
the counting distribution for different values of the transverse
field g. The mean number of particles increases with increasing
transverse field g. The variance is constant with g up to the

450 500 550
0

0.02

0.04

0.06

(a)

p(
m

)

m
0 1 2

0

0.5

1

(b)

g

FIG. 1. (Color online) (a) Counting probability distribution p(m)
of finding m particles for the fermionic system in Eq. (1) with
γ = κ = 1, g = 0, and N = 1000 at T = 0. (b) Mean m̄/N [(blue)
squares] and variance σ 2/N [(red) circles] of the counting distribution
as a function of the transverse field g at T = 0.

critical point and then decreases with increasing g. The phase
transition at g = 1 is clearly visible both in the mean and in
the variance. In [24], we studied the behavior of the counting
distribution for different values of the anisotropy parameter γ

and the detection efficiency κ . We found that the characteristic
behavior of the mean and variance as shown in Fig. 1(b) is
similar when γ varies from 0 to 1. We further found that the
phase transition is visible in the means and variances even
for low detection efficiencies. In the following we consider
full detection efficiency (κ = 1), as the results for smaller
efficiencies are similar.

B. Counting statistics at nonzero temperature

We now turn our discussion to the case of nonzero tem-
perature. The effect of the thermal fluctuations in the system
we consider is twofold. On the one hand, thermal fluctuations
induce the breaking of superfluid fermionic pairs. On the other
hand, the quantum phase transition reduces to a crossover
between different regions of the phase diagram. We show that
both effects are visible in the counting distribution functions.

We consider the counting statistics at finite temperature T

using the canonical ensemble, ρ = 1
Z
e−βĤ , where β = 1

kBT
,

Ĥ is given by Eq. (2), and the partition function Z =
Tr(e−β

∑
k Ĥk ). The finite temperature T determines the average

number of quasiparticle excitations d̂k . In order to calculate the
terms Ak and Bk defined in Eq. (14), we write ρk = 1

Zk
e−βĤk ,

where Zk = Tr(e−βĤk ), and we take the trace in the basis
{|00〉|01〉|10〉|11〉}. We obtain

Ak = 2κ

Zk

(
v2

k + e−βEk + e−2βEku2
k

)
,

Bk = κ2

Zk

(
v2

k + e−2βEku2
k

)
, (20)

Zk = 1 + 2e−βEk + e−2βEk . (21)

For a given value of the transverse field g, we fix the tem-
perature and obtain the number Nd = ∑N/2

k=1 Nd
k of fermionic

excitations:

Nd
k = Tr

(
ρkn̂

d
k

)
. (22)

As explained, we use Ak and Bk to obtain the recursive formula
for the counting distribution.

Thermal fluctuations induce the breaking of pairs. For
increasing temperature, the pairing of fermions with binding
energy proportional to γ in Eq. (1) is suppressed. This is
reflected in the counting distribution in such a way that the
counting probability for odd numbers of particles becomes
nonzero. To illustrate this, in Fig. 2 we plot the probability
of counting the exemplary odd value of m = 499 particles
as a function of temperature. As the temperature increases,
the pairs are broken and we observe a transition from zero
probability to a finite value. We compare a system with
low interaction strength γ = 0.01 [Fig. 2(a)] to the case of
γ = 1 [Fig. 2(b)]. In the insets, we compare the counting
distribution for each system at zero temperature and at the
indicated higher temperature. We observe that the splitting
between even and odd particle numbers disappears as the
temperature increases. Note that here we consider a perfect
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FIG. 2. (Color online) Probability of counting an odd number
(m = 499) of particles as a function of T (a) for γ = 0.01 and
(b) γ = 1. Insets: Counting distribution (a) for T = 0 and kBT /J =
0.01 and (b) for T = 0 and kBT /J = 0.2. Note that as T increases,
the splitting between even and odd particle numbers disappears.

detection process. For a lower detection efficiency, the splitting
is not visible, as shown in Ref. [24]. For low interaction
strength γ , the counting distribution is narrower, while higher
binding energies γ imply broader atom number distribution
functions. Also, observing the scales of temperatures when
the counting of odd particles become nonzero, one can infer
that this temperature is proportional to the binding energy of
the pairs γ .

Let us now turn the discussion to the influence of temper-
ature on the criticality of the system. As shown for the case
of zero temperature, the phase transition is visible in the mean
and variance of the distribution. This behavior is even more
evident in the derivatives of the mean and variance. In Fig. 3,
we plot the derivative of the mean and variance with respect to
g at different temperatures T . One can see how the criticality
is blurred when the temperature is of the order of the energies
of the system, kBT ∼ Ek . At high temperatures, the mean and
variance become independent of the transverse field value g

and take a constant value of 0.5N and 0.25N , respectively.

0 1 2
−5

0

5

10x 10
−3

g

(a) k
B
T/J=0

0 1 2
−5

0

5

10x 10
−3

g

(b) k
B
T/J=0.05

0 1 2
−5

0

5

10x 10
−3

g

(c) k
B
T/J=0.1

0 1 2
−2

0

2

4x 10
−3

(d) k
B
T/J=1

g

FIG. 3. (Color online) Derivative of the mean m̄/N [solid (blue)
line] and the variance σ 2/N [dashed (red) line] of the counting
distribution of the fermionic system, Eq. (1), with γ = 1 as a
function of the transverse field g. (a) T = 0 and Nd = 0 for all g;
(b) kBT /J = 0.05 and Nd/N � 0 at g = 0; (c) kBT /J = 0.1 and
Nd/N = 0.04 at g = 0; (d) kBT /J = 1 and Nd/N = 0.27 at g = 0.

V. COUNTING STATISTICS DURING THERMALIZATION
OF A SYSTEM COUPLED TO A HEAT BATH

The long decoherence times of experiments with ultracold
atoms allow study of the real-time quantum dynamics of these
systems. The dynamics of an open system coupled to a heat
bath have recently aroused much interest [11], as one can
use dissipation for quantum-state engineering. By tuning the
properties of the reservoir, thermalization can drive the system
to a steady state which has the desired properties and can,
for example, be used to encode quantum information. Here,
we consider the thermalization of the system Hamiltonian,
Eq. (1), when it is coupled to a heat bath. We start from the
ground state at T = 0 and let the system evolve to the thermal
Boltzmann-Gibbs equilibrium state. In this sense, we analyze
the counting statistics in a temperature quench. The coupling to
the heat bath is described by the quantum master equation [39],

d

dt
ρ(t)

= γ0

∑
k

(
Nd

k

2
+ 1

)[
d̂kρ(t)d̂†

k − 1

2
d̂
†
k d̂kρ(t) − 1

2
ρ(t)d̂†

k d̂k

]

+ γ0

∑
k

Nd
k

2

[
d̂
†
kρ(t)d̂k − 1

2
d̂kd̂

†
kρ(t) − 1

2
ρ(t)d̂kd̂

†
k

]
,

(23)

where γ0 is the coupling strength and Nd
k , defined in Eq. (22),

accounts for the mean number of fermions in the mode k at
a certain temperature T . This open-system dynamics assure
that the system approaches thermal equilibrium toward the
Boltzmann-Gibbs state.
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At this point, we would like to clarify an important point
in relation to particle counting of a dynamical system. The
system is governed by two dynamic processes: one is the
coupling to the heat bath described by Eq. (23), and the other
is the detection by particle counting described by Eq. (A1) in
the Appendix. We assume that the coupling of the system to the
heat bath occurs on a time scale much slower than the counting
process. The counting is thus performed in a time interval in
which the coupling to the bath does not affect the system, so
that it can be considered time independent. Here we show how
the counting statistics change during the thermalization of the
system with the heat bath. However, each of the distributions
is registered by the detector in a time interval during which no
change occurs.

A. Coupling to the excitations

In order to calculate the counting statistics of the system
coupled to a heat bath, we calculate the terms Ak and Bk in
Eq. (14), which now depend on time. From the master equation,
(23), the time-dependent mean excitation number is〈

n̂d
k (t)

〉 = e−γ0t
〈
n̂d

k (0)
〉 + Nd

k (1 − e−γ0t ). (24)

We start with the system initially in the vacuum state and use

〈d̂†
k d̂kd̂

†
−kd̂−k(t)〉 = 〈d̂†

k d̂k〉t 〈d̂†
−kd̂−k〉t (25)

to calculate the time-dependent terms Ak(t) and Bk(t) for a
system in a heat bath:

Ak(t)

κ
= u2

kN
d
k (1 − e−γ0t ) + v2

k

[
2 − Nd

k (1 − e−γ0t )
]
,

Bk(t)

κ2
= u2

k

[
Nd

k (1 − e−γ0t )
]2

4

+ v2
k

{
1 − Nd

k (1 − e−γ0t ) +
[
Nd

k (1 − e−γ0t )
]2

4

}
.

(26)

In Fig. 4, we plot the derivatives of the mean and variance
with respect to the transverse field g at different times t at a
fixed coupling rate γ0 = 1 and at a fixed temperature of the bath
kBT /J = 0.1. At the initial time t = 0, the mean and variance
correspond to those of the zero excitation state, ground state
at zero temperature [Fig. 4(a)] . The phase transition is clearly
visible in the derivative of both the mean and the variance.
Due to the coupling of the system and the bath, already at
intermediate times [see Fig. 4(b)], the characteristic behavior
of the mean and variance in the critical region washes out. For
long coupling times, the behavior is completely determined
by the bath. This can be seen by comparing Fig. 4(c) to the
behavior of the system at thermal equilibrium and kBT /J =
0.1 [see Fig. 3(c)].

In Fig. 5, we plot the mean and variance as a function of time
t for a system coupled to a heat bath at a very high temperature,
kBT /J = 100. Here, the transverse field g is fixed. For g = 0
[Fig. 5(a)], both the mean and the variance are constant as the
coupling increases. At the critical point g = 1 [Fig. 5(b)], the
variance is constant and the mean decreases as the coupling
time increases. For a high transverse field g = 2 [Fig. 5(c)],
the mean decreases until reaching the value of 0.5N and the
variance increases up to the value 0.25N .

0 1 2
−0.01

0

0.01

g

(a) Jt=0

0 1 2
−0.01

0

0.01

g

(b) Jt=1

0 1 2
−5

0

5x 10
−3

g

(c) Jt=10

FIG. 4. (Color online) Thermalization: Derivative with respect to
the parameter g of the mean [solid (blue) line] and variance [dashed
(red) line] for γ = 1 for increasing coupling time with γ0 = 1 and
kBT /J = 0.1. (a) The initial time when the system is not coupled to
the bath. (b) J t = 1. (c)J t = 10.

B. Local representation of the coupling

The master equation, (23), that we use to describe thermal-
ization shows two aspects. On the one hand, it is physically
meaningful to describe the coupling to the bath in terms of
an exchange of quasiparticles d̂k , because the Hamiltonian,
Eq. (1), conserves the number of quasiparticle excitations. On
the other hand, it may look nonphysical because the exchange
between the system and the bath is nonlocal. The aim of this
section is to show that the master equation can be rewritten in

0 1 2
0

0.5

1

(a) g=0

Jt

0 1 2
0

0.5

1

(b) g=1

Jt

0 1 2
0

0.5

1

Jt

(c) g=2

FIG. 5. (Color online) Thermalization: mean m̄/N [(blue)
squares] and variance σ 2/N [(red) circles] for increasing coupling
time t (γ = γ0 = 1). (a) g = 0; (b) g = 1; (c) g = 2.
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terms of local fermions ĉl , and in principle, it could be realized
using reservoir designs [11].

In the limit of high temperature and in the absence of a
transverse field (g = 0) at any temperature, the number of

excitations Nd
k in the bath is constant with k. In these two

limits, the master equation, (23), rewritten in terms of the
local operators ĉl reads

d

dt
ρ(t) = γ0

(
Nd

N
+ 1

) ∑
l,m

{
Fu(l − m)ĉlρĉ†m + Fv(l − m)ĉ†l ρĉm − Fuv(l − m)(ĉ†l ρĉ†m − ĉlρĉm)

− 1

2
[Fu(l − m)ĉ†l ĉmρ + Fv(l − m)ĉl ĉ

†
mρ − Fuv(l − m)(ĉ†l ĉ

†
mρ − ĉl ĉmρ)]

− 1

2
[Fu(l − m)ρĉ

†
l ĉm + Fv(l − m)ρĉl ĉ

†
m − Fuv(l − m)(ρĉ

†
l ĉ

†
m − ρĉl ĉm)]

}

+ γ0

∑
k

Nd

N

∑
l,m

{
Fu(l − m)ĉ†l ρĉm + Fv(l − m)ĉlρĉ†m − Fuv(l − m)(ĉ†l ρĉ†m − ĉlρĉm)

− 1

2
[Fu(l − m)ĉl ĉ

†
mρ + Fv(l − m)ĉ†l ĉmρ − Fuv(l − m)(ĉ†l ĉ

†
mρ − ĉl ĉmρ)]

− 1

2
[Fu(l − m)ρĉl ĉ

†
m + Fv(l − m)ρĉ

†
l ĉm − Fuv(l − m)(ρĉ

†
l ĉ

†
m − ρĉl ĉm)]

}
, (27)

where we define the functions

Fu(l − m) = 1

N

∑
k

u2
ke

i�k (l−m), (28)

Fv(l − m) = 1

N

∑
k

v2
ke

i�k (l−m), (29)

Fuv(l − m) = i

N

∑
k

ukvke
i�k (l−m), (30)

which depend on the distance l − m between two sites l and m

and are related to the correlation length of the quasiparticles
and the pairs. In Figs. 6 and 7, we study the behavior of the
functions Fu, Fv , and Fuv as the distance between the sites
increases. We plot Fu, Fv , and 1

i
Fuv for different values of

g and γ /J and show that the functions Fu and Fv have their
maximum at zero distance and decay rapidly as the distance
increases. The function Fuv , which corresponds to the pair
correlations, has its maximum at the nearest-neighbor term
|l − m| = |. We observe that for a large transverse field g � 1,
and γ /J → 0, the only nonzero term corresponds to Fv(0) =
1. In this case, the XY model behaves like a free Fermi gas and
the master equation, (23), reduces to

d

dt
ρ(t)

= γ0(Nd/N + 1)
∑

l

[
ĉ
†
l ρĉl − 1

2
ĉl ĉ

†
l ρ − 1

2
ρĉl ĉ

†
l

]

+ γ0Nd/N
∑

l

[
ĉlρĉ

†
l − 1

2
ĉ
†
l ĉlρ − 1

2
ρĉ

†
l ĉl

]
. (31)

Note that for these parameters, the quasiparticles d̂k → ĉ
†
k .

Thus at high T and high transverse field g, the bath and the
system exchange fermionic particles.

Another interesting limit occurs at any T when g → 0 and
γ /J = 1. Figure 6 shows that in this case, the functions Fu,

Fv are of the order of 0.5 for the same site and Fu, Fv , and Fuv

are of the order of ±0.25 for neighboring sites. The master
equation, (27), has contributions resulting from the exchange
of on-site fermions and an additional term that corresponds to
neighboring particles. Also, there is an exchange not only
of on-site particles and holes but also of fermionic pairs.
This is expected, as in the regime g � γ,J , the pair creation
dominates in the Hamiltonian, Eq. (1).

For low temperatures and at g 
= 0, the number of quasi-
particles Nd

k is not constant with k and the master equation
cannot be written in the form of Eq. (27). However, as Nd

k is
small for low temperatures, the nonlocal terms are negligible
and the equation as a whole remains local.
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FIG. 6. (Color online) Thermalization: (a) Fu, (b) Fv , and (c) Fuv

as a function of the distance between site l and site m for γ = 1 and
g = 0 [(blue) circles], g = 1 [(green) squares], and g = 10 [(red)
diamonds].
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FIG. 7. (Color online) Thermalization: (a) Fu, (b) Fv , and (c) Fuv

as a function of the distance between site l and site m for γ = 0.01
and g = 0 [(blue) circles], g = 1 [(green) squares], and g = 10 [(red)
diamonds].

VI. CONCLUSIONS

We have studied the effects of temperature on the counting
distribution of a strongly correlated fermionic system, which
can be mapped to the quantum XY spin model with a
transverse field. Thermal fluctuations induce pair breaking
in the superfluid fermionic system. We show that this is
reflected in the particle number distribution function, which
becomes nonzero for odd numbers of particles for a tem-
perature proportional to the pair formation strength. Also,
thermal fluctuations reduce the quantum phase transition into a
crossover between different regions of the phase diagram. We
have found that at low temperatures, the mean and variance
of the counting distribution reflect the critical behavior at the
crossover between different phases. This effect is obscured
with increasing temperature, and when the temperature is
comparable to the eigenergies of the system, the cumulants of
the counting distribution no longer reflect the critical behavior.
At high temperatures, there is no signature of the quantum
critical region.

Furthermore, we have shown that the number distribution
functions can be used to monitor the quantum dynamics of
the system. We have studied the thermalization of the system,
initially at zero temperature, when it is coupled to a heat bath at
finite temperature. This process is analogous to a temperature
quench. The temperature determines the number of delocalized
excitations in the system at equilibrium. For high temperatures
and high transverse fields, the exchange of excitations between
system and bath can be mapped into the exchange of local
fermions. For zero transverse field, we have shown that the
exchange of local excitations corresponds to the exchange of
local particles and nearest-neighbor pairs. We have assumed
that the counting process occurs at a different time scale, much
faster than the exchange of excitations between the system and
the bath. We have shown that the mean and variance of the
counting distribution can be used to map the thermalization
process.
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APPENDIX: COUNTING OF CONSTANT FIELDS

The counting formula in Eq. (10) has been derived in
different ways [12,40–46]. Here, we review a derivation (see,
e.g., [47]) by modeling the absorption of the particles at the
detector with the master equation

ρ̇ = εâρâ† − ε

2
â†âρ − ε

2
ρâ†â, (A1)

where a† and a are the creation and annihilation operator of
the particle to be counted. Performing a rotation of the density
matrix, ρ(t) = e− ε

2 t â†â ρ̃(t)e− ε
2 t â†â , and using the relation

eγABe−γA = B + γ [A,B] + γ 2

2!
[A,[A,B]] + . . . , (A2)

we obtain

˙̃ρ(t) = εâe
−ε
2 t ρ̃â†e

−ε
2 t = εe−εt âρ̃â†. (A3)

This equation can be solved using perturbation theory:

ρ̃(t) = ρ̃(0) +
∫ t

0
εe−εt ′ âρ̃(t ′)â†. (A4)

Transforming back the rotation, we obtain

ρ(t) = e− ε
2 t â†â

(
ρ̃(0) +

∫ t

0
εe−εt ′ âρ̃(0)â† + · · ·

)
e− ε

2 t â†â .

(A5)

Using the cyclic properties of the trace, the probability pm(t)
of counting m particles can be written as

pm(t) = Tr

[
ρ(0)a†m

( ∫ t

0 dt ′εe−εt ′
)m

m!
e−εta†aam

]
. (A6)

This is equal to the normally ordered expression

pm(t) =
〈
: (1 − e−εt )m

(â†â)m

m!
e−(1−e−εt )â†â :

〉
, (A7)

which holds because

: (â†â)me−(1−e−εt )â†â : = â†m : e−(1−e−εt )â†â : âm

= â†me−εtâ†â âm. (A8)

We can thus use the generating function formalism in
Eq. (12) with κ = ∫ τ

0 dt ′εe−εt ′ = 1 − exp (−ετ ), where τ is
the aperture time of the detector.
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