794 research outputs found

    Effect of follicular fluid supplementation on in vitro maturation of porcine oocytes [abstract]

    Get PDF
    Abstract only availableThe reproductive process that occurs in the female is controlled by a series of critical events. One such event that must occur is the "maturation" of the oocyte prior to its ovulation, so that it is capable of being fertilized. This maturation process occurs naturally in vivo and has been mimicked in vitro. Currently, there are two methods of determining oocyte maturation after being subjected to an oocyte in vitro maturation (IVM) protocol. The first method involves fixing and staining the oocytes to identify the developmental stage of each oocyte. The second method is based on visually determining whether each oocyte has extruded a polar body, which indicates that the oocyte has resumed meiosis and reached metaphase II. Follicular fluid (FF) is believed to play an important role in the in vivo maturation of oocytes. Our hypothesis was: 1) that the addition of FF to the IVM medium would increase the number of oocytes reaching metaphase II, and 2) that the success rate was dependent on the percentage of FF in the culture media. To test this hypothesis, we utilized porcine oocytes and porcine follicular fluid (pFF). Porcine ovaries were collected from a nearby slaughter facility and transported to the lab where the oocytes were aspirated from follicles on the ovaries of prepuberal gilts. Oocyte culture media consisted of: 1) TCM 199 as a control medium, 2) TCM 199 + 10% pFF, 3) TCM 199 + 25% pFF, or 4) TCM 199 + 50% pFF. Oocytes were randomly allocated to one of the four culture media and incubated at 37.5°C for approximately 46 hours. After incubation the cumulus complex was removed using hyaluronidase, and oocytes were examined for the presence of an extruded polar body. The control medium incubation resulted in 54.25% of oocytes reaching metaphase II (i.e. they had an extruded polar body). Incubation of oocytes in TCM 199 + 10% pFF resulted in a 57.96% maturation rate; incubation in TCM 199 + 25% pFF resulted in a 54.61% maturation rate and incubation in TCM 199 + 50% pFF resulted in a 48.10% maturation rate. Although there was no significant difference among the treatments, we suggest that these data provide evidence that the addition of pFF to the IVM culture of porcine oocytes may be beneficial, but not when added in excess of 25%.CAFNR On Campus Research Internshi

    Downregulation of 15-hydroxyprostaglandin dehydrogenase during acquired tamoxifen resistance and association with poor prognosis in ERα-positive breast cancer

    Get PDF
    Aim: Tamoxifen (TAM) resistance remains a clinical issue in breast cancer. The authors previously reported that 15-hydroxyprostaglandin dehydrogenase (HPGD) was significantly downregulated in tamoxifen-resistant (TAMr) breast cancer cell lines. Here, the authors investigated the relationship between HPGD expression, TAM resistance and prediction of outcome in breast cancer. Methods: HPGD overexpression and silencing studies were performed in isogenic TAMr and parental human breast cancer cell lines to establish the impact of HPGD expression on TAM resistance. HPGD expression and clinical outcome relationships were explored using immunohistochemistry and in silico analysis. Results: Restoration of HPGD expression and activity sensitised TAMr MCF-7 cells to TAM and 17β-oestradiol, whilst HPGD silencing in parental MCF-7 cells reduced TAM sensitivity. TAMr cells released more prostaglandin E2 (PGE2) than controls, which was reduced in TAMr cells stably transfected with HPGD. Exogenous PGE2 signalled through the EP4 receptor to reduce breast cancer cell sensitivity to TAM. Decreased HPGD expression was associated with decreased overall survival in ERα-positive breast cancer patients. Conclusions: HPGD downregulation in breast cancer is associated with reduced response to TAM therapy via PGE2-EP4 signalling and decreases patient survival. The data offer a potential target to develop combination therapies that may overcome acquired tamoxifen resistance

    Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell carcinoma: results from the Netherlands cohort study

    Get PDF
    BACKGROUND: Biallelic von Hippel-Lindau (VHL) gene defects, a rate-limiting event in the carcinogenesis, occur in approximately 75% of sporadic clear-cell Renal Cell Carcinoma (RCC). We studied the VHL mutation status in a large population-based case group. METHODS: Cases were identified within the Netherlands cohort study on diet and cancer, which includes 120,852 men and women. After 11.3 years of follow-up, 337 incident cases with histologically confirmed epithelial cancers were identified. DNA was isolated from paraffin material collected from 51 pathology laboratories and revised by one pathologist, leaving material from 235 cases. VHL mutational status was assessed by SSCP followed by direct sequencing, after testing SSCP as a screening tool in a subsample. RESULTS: The number of mutations was significantly higher for clear-cell RCC compared to other histological types. We observed 131 mutations in 114 out of 187 patients (61%) with clear-cell RCC. The majority of mutations were truncating mutations (47%). The mean tumor size was 72.7 mm for mutated tumors compared to 65.3 mm for wildtype tumors (p = 0.06). No statistically significant differences were observed for nuclear grade, TNM distribution or stage. In other histological types, we observed 8 mutations in 7 out of 48 patients (15%), 1 mutation in 1 of 6 oncocytoma, 3 mutations in 2 of 7 chromophobe RCC, 2 mutations in 2 of 30 papillary RCC, no mutations in 1 collecting duct carcinoma and 2 mutations in 2 of 4 unclassified RCC. CONCLUSION: VHL mutations were detected in 61% of sporadic clear-cell RCC. VHL mutated and wildtype clear-cell RCC did not differ with respect to most parameters

    Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer

    No full text
    Tamoxifen is the standard-of-care treatment for estrogen receptor-positive premenopausal breast cancer. We examined tamoxifen metabolism via blood metabolite concentrations and germline variations of CYP3A5, CYP2C9, CYP2C19 and CYP2D6 in 587 premenopausal patients (Asians, Middle Eastern Arabs, Caucasian-UK; median age 39 years) and clinical outcome in 306 patients. N-desmethyltamoxifen (DM-Tam)/(Z)-endoxifen and CYP2D6 phenotype significantly correlated across ethnicities (R2: 53%, P<10?77). CYP2C19 and CYP2C9 correlated with norendoxifen and (Z)-4-hydroxytamoxifen concentrations, respectively (P<0.001). DM-Tam was influenced by body mass index (P<0.001). Improved distant relapse-free survival (DRFS) was associated with decreasing DM-Tam/(Z)-endoxifen (P=0.036) and increasing CYP2D6 activity score (hazard ratio (HR)=0.62; 95% confidence interval (CI), 0.43–0.91; P=0.013). Low (<14?nM) compared with high (>35?nM) endoxifen concentrations were associated with shorter DRFS (univariate P=0.03; multivariate HR=1.94; 95% CI, 1.04–4.14; P=0.064). Our data indicate that endoxifen formation in premenopausal women depends on CYP2D6 irrespective of ethnicity. Low endoxifen concentration/formation and decreased CYP2D6 activity predict shorter DRFS

    A multinodular goiter as the initial presentation of a renal cell carcinoma harbouring a novel VHL mutation

    Get PDF
    BACKGROUND: Secondary involvement of the thyroid gland is rare. Often the origin of the tumor is difficult to identify from the material obtained by fine-needle aspiration cytology. Renal cell carcinoma of the clear-cell type is one of the more common carcinomas to metastasize to the thyroid gland. Somatic mutations of the von Hippel-Lindau tumor suppressor gene are associated with the sporadic form of this tumor. We aimed to illustrate the potential utility of DNA based technologies to search for specific molecular markers in order to establish the anatomic site of origin. CASE PRESENTATION: A 54-yr-old Caucasian male complaining of a rapidly increasing neck tumor was diagnosed as having a clear-cell tumor by fine-needle aspiration cytology. A positive staining for cytokeratin as well as for vimentin and CD10 in the absence of staining for thyroglobulin, calcitonin and TTF1 suggested a renal origin confirmed by computed tomography. Using frozen RNA, obtained from cells left inside the needle used for fine needle aspiration cytology, it was possible to identify a somatic mutation (680 delA) in the VHL gene. CONCLUSION: In the presence of a clear-cell tumor of the thyroid gland, screening for somatic mutations in the VHL gene in material derived from thyroid aspirates might provide additional information to immunocytochemical studies and therefore plays a contributory role to establish the final diagnosis. Moreover, in a near future, this piece of information might be useful to define a targeted therapy

    Obesity Alters Endoxifen Plasma Levels in Young Breast Cancer Patients: A Pharmacometric Simulation Approach

    Get PDF
    Endoxifen is the most important metabolite of the prodrug tamoxifen. High interindividual variability in endoxifen steady-state concentrations (CSS,min ENDX) is observed under tamoxifen standard dosing breast cancer patients that do not reach endoxifen concentrations above a proposed therapeutic threshold of 5.97 ng/mL may be at higher recurrence risk. In this investigation, 10 clinical tamoxifen studies were pooled (nPatients=1388) to investigate influential factors on CSS,min ENDX using nonlinear mixed-effects modelling. Age and body weight were found to significantly impact CSS,min ENDX in addition to CYP2D6 phenotype. Compared to post-menopausal patients, pre-menopausal patients had a 30% higher risk for subtarget CSS,min ENDX at tamoxifen 20 mg per day. In treatment simulations for distinct patient subpopulations, young overweight patients had a 3.1-13.8-fold higher risk for subtarget CSS,min ENDX compared to elderly low-weight patients. Considering ever-rising obesity rates and the clinical importance of tamoxifen for pre-menopausal patients, this subpopulation may benefit most from individualised tamoxifen dosing

    Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance

    Get PDF
    Enzymes are critically important in the transportation, metabolism, and clearance of most therapeutic drugs used in clinical practice today. Many of these enzymes have significant genetic polymorphisms that affect the enzyme's rate kinetics. Regarding drug metabolism, specific polymorphisms to the cytochrome (CYP) P450 enzyme family are linked to phenotypes that describe reaction rates as "ultra", "intermediate", and "poor," as referenced to "extensive" metabolizers that are assigned to wildtype individuals. Activity scores is an alternate designation that provides more genotype-to-phenotype resolution. Understanding the relative change in enzyme activities or rate of clearance of specific drugs relative to an individual's genotypes is an important component in the interpretation of pharmacogenomic data for personalized medicine. Currently, the most relevant drug metabolizing enzymes are CYP 2D6, CYP 2C9, CYP 2C19, thiopurine methyltransferase (TPMT) and UDP-glucuronosyltransferase (UGT). Each of these enzymes is reactive to a host of different drug substrates. Pharmacogenomic tests that are in routine clinical practice include CYP 2C19 for clopidogrel, TPMT for thiopurine drugs, and UDP-1A1 for irinotecan. Other tests where there is considerable data but have not been widely implemented includes CYP 2C9 for warfarin, CYP 2D6 for tamoxifen and codeine, and CYP 2C19 for the proton pump inhibitors
    corecore