34 research outputs found

    Breeding status influences timing but not duration of moult in the Northern Fulmar Fulmarus glacialis

    Get PDF
    We thank Orkney Islands Council for access to Eynhallow and all the fieldworkers involved in deployment and recovery of the GLS tags and colony monitoring. All ringing work was carried out under permit from the BTO. We are grateful to James Fox of Migrate Technologies for recovering data from GLS loggers which would not download, and Richard Phillips and Janet Silk of BAS for advice on GLS analysis. Lucy Quinn was supported by a NERC Studentship and additional funding to support fieldwork was gratefully received from Talisman Energy (UK) Ltd. Additional support for loggers and analysis was provided through the SEATRACK project, which is funded by the Norwegian Ministry of Climate and Environment, the Norwegian Ministry of Foreign Affairs and the Norwegian Oil and Gas Association.Peer reviewedPostprin

    Novel frontier in wildlife monitoring: Identification of small rodent species from fecal pellets using near-infrared reflectance spectroscopy (NIRS)

    Get PDF
    Small rodents are prevalent and functionally important across the world's biomes, making their monitoring salient for ecosystem management, conservation, forestry, and agriculture. There is a growing need for cost-effective and noninvasive methods for large-scale, intensive sampling. Fecal pellet counts readily provide relative abundance indices, and given suitable analytical methods, feces could also allow for the determination of multiple ecological and physiological variables, including community composition. In this context, we developed calibration models for rodent taxonomic determination using fecal near-infrared reflectance spectroscopy (fNIRS). Our results demonstrate fNIRS as an accurate and robust method for predicting genus and species identity of five coexisting subarctic microtine rodent species. We show that sample exposure to weathering increases the method's accuracy, indicating its suitability for samples collected from the field. Diet was not a major determinant of species prediction accuracy in our samples, as diet exhibited large variation and overlap between species. fNIRS could also be applied across regions, as calibration models including samples from two regions provided a good prediction accuracy for both regions. We show fNIRS as a fast and cost-efficient high-throughput method for rodent taxonomic determination, with the potential for cross-regional calibrations and the use on field-collected samples. Importantly, appeal lies in the versatility of fNIRS. In addition to rodent population censuses, fNIRS can provide information on demography, fecal nutrients, stress hormones, and even disease. Given the development of such calibration models, fNIRS analytics could complement novel genetic methods and greatly support ecosystem- and interaction-based approaches to monitoring

    Novel frontier in wildlife monitoring : Identification of small rodent species from fecal pellets using near-infrared reflectance spectroscopy (NIRS)

    Get PDF
    Small rodents are prevalent and functionally important across the world's biomes, making their monitoring salient for ecosystem management, conservation, forestry, and agriculture. There is a growing need for cost-effective and noninvasive methods for large-scale, intensive sampling. Fecal pellet counts readily provide relative abundance indices, and given suitable analytical methods, feces could also allow for the determination of multiple ecological and physiological variables, including community composition. In this context, we developed calibration models for rodent taxonomic determination using fecal near-infrared reflectance spectroscopy (fNIRS). Our results demonstrate fNIRS as an accurate and robust method for predicting genus and species identity of five coexisting subarctic microtine rodent species. We show that sample exposure to weathering increases the method's accuracy, indicating its suitability for samples collected from the field. Diet was not a major determinant of species prediction accuracy in our samples, as diet exhibited large variation and overlap between species. fNIRS could also be applied across regions, as calibration models including samples from two regions provided a good prediction accuracy for both regions. We show fNIRS as a fast and cost-efficient high-throughput method for rodent taxonomic determination, with the potential for cross-regional calibrations and the use on field-collected samples. Importantly, appeal lies in the versatility of fNIRS. In addition to rodent population censuses, fNIRS can provide information on demography, fecal nutrients, stress hormones, and even disease. Given the development of such calibration models, fNIRS analytics could complement novel genetic methods and greatly support ecosystem- and interaction-based approaches to monitoring.Peer reviewe

    A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease

    Get PDF
    Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer’s disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer’s disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer’s disease to identify further genetic variants that contribute to Alzheimer’s pathology

    Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs

    Get PDF
    Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top-down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography-mass spectrometry (LC-MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations. We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence. We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation

    Genome-wide analyses reveal a potential role for the <em>MAPT</em>, <em>MOBP</em>, and <em>APOE </em>loci in sporadic frontotemporal dementia

    Get PDF
    \ua9 2024 The Author(s)Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 7 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 7 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 7 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms
    corecore