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Abstract 

Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–70% 

of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s disease 

have been identified. Here we show that increased sample sizes allowed identification of seven 

previously unidentified genetic loci contributing to Alzheimer’s disease. This study highlights 

microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer’s disease, while 

identifying and prioritizing previously unidentified genes of potential interest. We anticipate that 

these results can be included in larger meta-analyses of Alzheimer’s disease to identify further 

genetic variants that contribute to Alzheimer’s pathology. 

 

Main 

Dementia has an age- and sex-standardized prevalence of ~7.1% in Europeans1, with Alzheimer’s 

disease (AD) being the most common form of dementia (50–70% of cases)2. AD is pathologically 

characterized by the presence of amyloid-beta plaques and tau neurofibrillary tangles in the brain3. 

Most patients are diagnosed with AD after the age of 65, termed late-onset AD (LOAD), while only 

1% of AD cases have an early onset (before the age of 65)3. On the basis of twin studies, the 

heritability of LOAD is estimated to be ~60–80% (refs. 4,5), suggesting that a large proportion of 

individual differences in LOAD risk is driven by genetics. The heritability of LOAD is spread across 

many genetic variants; however, Zhang et al.6 suggested that LOAD is more of an oligogenic than a 

polygenic disorder due to the large effects of APOE variants. Zhang et al.6 and Holland et al.7 

predicted there to be ~100–10,000 causal variants contributing to LOAD; however, only a fraction 

have been identified. Increasing the sample size of genome-wide association studies (GWAS) will 

improve the statistical power to identify the missing causal variants and may highlight additional 

disease mechanisms. In combination with increasing the number of samples, it is beneficial to use 

different approaches to identify rare and private variation to help identify additional causal variants 

and increase understanding of disease mechanisms; however, we deem this to be out of the scope of 

the current analysis. 

 



The largest previous GWAS of LOAD, identified 29 risk loci from 71,880 (46,613 proxy) cases and 

383,378 (318,246 proxy) controls8. Our current study expands this to include 90,338 (46,613 proxy) 

cases and 1,036,225 (318,246 proxy) controls. The recruitment of LOAD cases can be difficult due to 

the late age of onset, so proxy cases can allow for the inclusion of younger individuals by estimating 

their risk of LOAD using parental status. Proxy cases and controls were defined on the basis of known 

parental LOAD status weighted by parental age (Supplementary Information). In the current study, 

we identified 38 loci, including seven loci that have not been reported previously. Functional follow-

up analyses implicated tissues, cell types and genes of interest through tissue and cell type 

enrichment, colocalization and statistical fine-mapping. This study highlights microglia, immune cells 

and protein catabolism as relevant to LOAD, while identifying previously unidentified genes of 

potential interest. 

 

Results 

Genome-wide inferences 

We performed meta-analysis on data from 13 cohorts, totaling 1,126,563 individuals (Supplementary 

Table 1). The inflation factors and linkage disequilibrium score (LDSC) regression9 intercepts of each 

dataset are reported in Supplementary Table 2. The liability scale SNP heritability was estimated by 

LDSC regression9 to be 0.031 (s.e. = 0.0062) given a population prevalence of 0.05 (UK Biobank (UKB) 

data excluded). This estimate is low but similar to the estimates obtained in previous GWAS meta-

analyses (Jansen et al.8: liability scale heritability = 0.055, s.e. = 0.0099; Lambert et al.10: observed 

scale heritability = 0.069, s.e. = 0.013). The LDSC intercept was 1.022 (s.e. = 0.013), the inflation factor 

(λ) for the meta-analysis was 1.11 and the sample size-adjusted inflation factor (λ1,000)11 was 1.007. 

The genetic correlation12 between proxy LOAD and case–control LOAD was 0.83 (s.e. = 0.21, 

P = 6.61 × 10−5). Separate Manhattan plots for the LOAD proxy data and the case–control LOAD data 

are available in Supplementary Figs. 1 and 2. Across 855 external phenotypes in LD Hub13, two 

significant genetic correlations with the meta-analysis results were observed, both of which were 

identified in previous studies of LOAD (Supplementary Information and Supplementary Table 3). 

 

The meta-analysis identified 3,915 significant (P < 5 × 10−8) variants across 38 independent loci 

(Table 1 and Fig. 1). Of those 38 loci, seven have not shown associations with LOAD in previous 

GWAS, and five of those loci have not been associated with any form of dementia (AGRN, TNIP1, 

HAVCR2, NTN5, LILRB2). The lead variant effect estimates and significance values per dataset for 

each locus are reported in Supplementary Table 4. We largely replicated the loci identified in Jansen 

et al.8, however, seven loci were not found to be genome-wide significant in this study, five of those 

were just below significance and two were driven by rare variants (largely) not included in this study 

(Supplementary Information and Supplementary Table 5). However, we successfully replicated all the 

significant loci in Kunkle et al.14 (Supplementary Table 6). 

Only variants with P < 0.0005 are displayed. The APOE region cannot be fully observed because the y 

axis is limited to the top variant in the second most significant locus, −log10(1 × 10−60), to display the 

less significant variants. The red line represents genome-wide significance (5 × 10−8). The P values 

were identified through a meta-analysis (two-sided test) of summary statistics generated by 

linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The previously 

unidentified loci are highlighted in green and indicated by the assigned gene name. The 



TNIP1/HAVCR2 regions and the NTN5/LILRB2 regions are close enough together that they cannot be 

visually distinguished at this scale, but are different genomic risk loci. 

MAGMA tissue specificity analysis15 identified spleen (PBonferroni = 0.034) as the only Genotype-

Tissue Expression (GTEx) tissue, where expression of the MAGMA genes was significantly associated 

(Supplementary Fig. 3 and Supplementary Table 7). However, this tissue was slightly above the 

significance threshold (PBonferroni = 0.054) when the larger APOE region (GRCh37: 19:40,000,000–

50,000,000) was excluded (Supplementary Table 7). Spleen was also significant in the previous 

MAGMA tissue specificity analysis performed in Jansen et al.8 and is a known contributor to immune 

function. To investigate enrichment at the cell type level, FUMA cell type analysis16 was performed 

with a collection of cell types in mouse brain, human brain and human blood tissue. Six single-cell 

RNA-sequencing (scRNA-seq) datasets were significantly associated, after multiple testing correction, 

with the expression of LOAD-associated genes (Supplementary Fig. 4 and Supplementary Table 8). 

Microglia were the only significant cell type in all six independent scRNA-seq datasets. We confirm 

previously observed enrichment for nonhuman microglial cells8, and report additional similar 

enrichments in human microglia. Four of these enrichments remained significant after exclusion of 

the larger APOE region, suggesting that genomic regions outside of the APOE region play a 

substantial role in the microglia finding. A combination of the cell type and tissue specificity results 

identifies microglia and immune tissues as potential experimental models for identifying the 

contribution of LOAD-associated genes towards LOAD pathogenesis. 

MAGMA gene-set analysis15 identified 25 gene ontology biological processes (Supplementary Table 

9) that were significantly enriched, after multiple testing correction, for LOAD-associated variants. 

Subsequent conditional gene-set analyses confirmed independent association of four of these 25 

gene sets, reflecting the role of LOAD-associated genes in amyloid and tau plaque formation, protein 

catabolism of plaques, immune cell recruitment and glial cells (Supplementary Table 9). The 

exclusion of the larger APOE region resulted in the loss of five significant gene sets related to 

amyloid-beta clearance, phospholipid efflux, cholesterol transport, protein lipid interactions and tau 

binding, and the gain of two significant gene sets related to tau degradation and astrocyte activation 

(Supplementary Table 9). Conditional gene-set analysis, with the larger APOE region excluded, 

identified four independent gene sets related to astrocyte activation, immune cell recruitment, 

amyloid catabolism and neurofibrillary tangles. The gene-set related to glial cells was still significant 

after removal of the APOE region, but was not identified as an independent gene set, which suggests 

that this association can be explained by the APOE region in addition to another significant 

independent gene set. Largely, the themes highlighted in the gene-set analysis are robust to the 

exclusion of the APOE region. Our gene-set analysis identified the same themes as Jansen et al.8 and 

further identified significant gene sets involved in immune cell recruitment and neuronal cell types. 

Gene prioritization 

As expected, the genomic risk loci identified in this study were enriched for active chromatin and 

variant annotations relating to gene function (Supplementary Information). We performed functional 

follow-up (colocalization and fine-mapping) to further dissect the genomic risk loci to identify 

potential disease drivers. Functional mapping of variants to genes on the basis of position and 

expression quantitative trait loci (eQTL) information from brain and immune tissues/cells identified 

989 genes that mapped to one of the 38 genomic risk loci (Supplementary Table 10). These mapped 

genes were annotated with the drugs that target them on the basis of information from DrugBank17. 

 



Due to linkage disequilibrium (LD) and the inability to distinguish true causal variants from variants in 

LD, many of the mapped genes may be functionally irrelevant to LOAD. To highlight potentially 

relevant genes, eQTL data from immune tissues, brain and microglia were colocalized with the 

genomic risk loci using Coloc18. We used the 19 successful colocalizations (Supplementary Table 11) 

for nine genes (TNIP1, MADD, APH1B, GRN, AC004687.2, ACE, NTN5, CD33 and CASS4) to prioritize 

genes in those loci. Statistical fine-mapping with susieR was additionally performed to narrow down 

the associated region (Supplementary Table 12). The statistical fine-mapping required an external 

reference panel, which limits the interpretation of the findings, so only high confidence variants 

(posterior inclusion probability (PIP) in a credible set >0.95) were considered in gene prioritization. 

Gene prioritization of the previously unidentified loci, and a description of colocalization and fine-

mapping evidence for previously identified loci, is available in the Supplementary Information. Some 

of the most interesting findings for the previously unidentified loci are highlighted below. 

The lead variant of locus 7 (rs871269; P = 1.37 × 10−9; minor allele frequency (MAF) = 0.34) is located 

in an intron of TNIP1 (Supplementary Fig. 5) and maps to GPX3, TNIP1 and SLC36A1 on the basis of 

eQTLs within blood tissue. The lead variant is supported by a few variants with suggestive signal 

(rs34294852; P = 1.05 × 10−6) but none of these variants are in LD (R2 > 0.1) in the 1000 Genomes 

(1KG) European (EUR) population. However, these variants are in moderate/low LD with the lead 

variant (R2 = 0.2–0.6) in the 1KG East Asian (EAS) and American populations. This suggests that the 

1KG EUR reference panel does not accurately represent the LD structure of our data at this locus. The 

fine-mapping results from susieR identified the lead variant as the only variant with high PIP (>0.99). 

However, the association signal in this locus colocalized with a nearby suggestive variant 

(rs34294852; R2 = 0.29 in 1KG EAS); this variant is an eQTL for TNIP1 in blood tissue (TwinsUK). 

Support from previous literature is sparse; however, TNIP1 has the most support of the three genes. 

TNIP1 contributes to hyperinflammation and has been previously identified in an autoimmune 

GWAS19. TNIP1 was included in a transcription module regulated by Bcl3 in mouse microglia20, 

where this module was implicated in prolonged exposure to inflammation and aging of microglia. The 

gene encoding Bcl3 (BCL3) was found to be significantly associated with cerebrospinal fluid amyloid-

beta1–42 peptide after conditioning for APOE21 and was observed as upregulated postmortem in 

the brain of patients with LOAD22. Further investigation into this locus in nonEuropean populations 

may yield more support for the lead variant and improve the fine-mapping analysis. 

The lead variant of locus 8 (rs6891966; P = 7.91 × 10−10) is located in an intron of HAVCR2 

(Supplementary Fig. 6). HAVCR1 and TIMD4 also map to this region on the basis of brain eQTLs 

(PsychENCODE). HAVCR2 was significantly differentially expressed in bulk brain tissue of patients 

with LOAD compared to controls23. HAVCR2 is preferentially expressed in aged microglia24, was 

included as one of the top 100 enriched transcripts in brain and microglia and was included in a 

cluster of transcripts that are involved in sensing endogenous ligands and microbes25. The protein 

encoded by HAVCR2 (Havcr2) has been suggested to bind to phosphatidylserine on cell surfaces to 

mediate apoptosis26 and to interact with amyloid precursor protein27. TIMD4 is another gene in this 

region that encodes a protein (TIM-4) with a similar function to Havcr2; it binds to 

phosphatidylserine on cell surfaces to mediate apoptosis, and microglia without TIM-4 receptors 

have reduced apoptotic clearance28. Follow-up experimental work would be useful to determine the 

role that these genes play within LOAD. 

Locus 12 and locus 28 have been previously associated with dementia29 but not within a previous 

LOAD GWAS. The lead variant in locus 12 (rs5011436; P = 2.7 × 10−9) is an intron variant in 

TMEM106B (Supplementary Fig. 7). A nearby exonic variant (rs3173615; R2 = 0.976 in 1KG EUR; 

P = 6.61 × 10−9) with a CADD score of 21.2 has been discussed as the association signal-driving 



variant in frontotemporal dementia (FTD) by causing decreased transmembrane protein 106B (the 

protein encoded by TMEM106B) abundance through increased protein degradation30. TMEM106B 

was also found to be significantly differentially expressed in bulk brain tissue of patients with LOAD 

compared to controls23. The lead variant in locus 28 (rs708382; P = 1.98 × 10−9) is an upstream 

variant of FAM171A2 (Supplementary Fig. 8). Interestingly, the protein (integrin alpha-IIb) encoded 

by a nearby gene (ITGA2B) is a target for abciximab, an antibody that inhibits platelet aggregation 

and is used to estimate concentrations of coated platelets31. In patients with mild cognitive 

impairments, elevated coated-platelet levels are linked to increased risk of LOAD progression. 

However, the association signal in this locus colocalized with an eQTL for GRN in brain tissue 

(ROSMAP and BrainSeq) with the lead variant identified as the colocalized variant. GRN is also a 

known FTD gene32 and has the most evidence for being the causal gene in the region. The 

association signals in locus 12 and locus 28 do not appear to be primarily driven by the UKB data 

(Supplementary Information), which suggests that the associations of the known FTD genes are not 

driven by the proxy phenotype. These results suggest that TMEM106B and GRN are not solely 

contributing to FTD, but also contributing to LOAD, suggesting that their biological implications might 

be related to protein clearance mechanisms rather than involvement in specific disease-related 

protein aggregates. 

The lead variant of locus 36 (rs1761461, P = 1.56 × 10−9) is an intergenic variant upstream of LILRA5 

(Supplementary Fig. 9). The lead variant is an eQTL for LILRA5, LILRP2, LILRB1 and LILRA4 in GTEx 

whole blood. These genes encode a family of transmembrane glycoproteins that mediate immune 

activation33. LILRB5, LILRA5 and LILRB2 were significantly differentially expressed in bulk brain tissue 

of patients with LOAD compared to controls23. Interestingly, LILRB2 is a nearby gene in the same 

family and encodes a protein (leukocyte immunoglobulin-like receptor B2) that is known to inhibit 

axonal regeneration and to contribute to LOAD through amyloid binding33. The role of LILRB2 in 

LOAD has been investigated in mouse models and results suggest that drug-targeting this gene could 

be a beneficial treatment approach34. While prioritizing this region to a single gene is difficult, the 

LILR family appears to be the most likely candidate for explaining the association signal. 

 

Discussion 

We performed a large GWAS for LOAD, including 1,126,563 individuals, and identified 38 LOAD-

associated loci, including seven previously unidentified loci. The data included both clinical cases and 

proxy cases, defined on the basis of parental LOAD status, a strategy that was validated previously by 

ourselves8 and others35. Through gene-set analysis, tissue and single-cell specificity analysis, 

colocalization and fine-mapping, this study highlighted additional biological routes that connect 

genetic variants to LOAD pathology. These functional analyses all implicated immune cells and 

microglia as cells of interest, which provided genetic support to the current understanding of LOAD 

pathology36. The seven previously unidentified loci were functionally annotated and fine-mapped to 

help narrow down candidate causal genes. Two of the previously unidentified loci have been 

previously associated with FTD29. This signal is not driven by the nonmedically verified LOAD cases in 

the UKB proxy LOAD data (Supplementary Information), which suggests that this region is pleiotropic 

for FTD or contains separate causal variants within the same LD blocks. 

A recent study7 produced a power curve for LOAD using a model that accounts for large and small 

effect variants. This model was based on summary statistics from a previous GWAS of LOAD10. A 

sample size of 2.2 million is predicted to identify 80% of genetic variance on chromosome 19, and a 

sample size of 7.8 million is predicted to identify 80% genetic variance outside chromosome 19. The 



effective sample size35 of our meta-analysis was ~169,608, so, on the basis of previous power 

estimates, our study was powered to explain ~6% of genetic variance outside chromosome 19 and 

58.9% of genetic variance on chromosome 19 (Supplementary Fig. 10). We demonstrated that an 

increased sample size in a GWAS meta-analysis approach allowed for identification of previously 

unidentified loci; however, Holland et al.7 also predicted there to be approximately 300 large effect 

causal variants contributing to LOAD. These large effect variants (and small effect rare variants) are 

unlikely to be identified through traditional GWAS approaches focusing on common variants. Larger 

sample size GWAS approaches should be complemented with rare variant, copy number variant and 

private variant discovery to identify the remaining causal variants. 

Future work focusing on fine-mapping, generating larger QTL databases in more specific cells types 

and incorporating other ancestries will improve the interpretability of associated loci. Our 

colocalization analysis identified a candidate causal gene in nine of the 38 loci and we expect that 

larger and more specific QTL datasets will improve the number of successful colocalizations. Yao et 

al.37 highlighted a need for higher sample size eQTL discovery and suggested that genes with smaller 

effect eQTLs are more likely to be causal for common traits. The identification of human microglia, 

but not bulk brain tissue, as a cell/tissue type of interest in this study supported a finding in a recent 

single-cell epigenomic study38, which showed that investigating individual cell types will be more 

fruitful than bulk brain tissue for understanding the route from variant to LOAD pathology. 

One important goal for LOAD GWAS is the identification of medically actionable information that can 

help in diagnosis or treatment in all populations. This study was limited in the ability to identify 

causal genes and in the applicability to nonEuropean populations. Further study in nonEuropean 

populations will improve the equity of genetic information and also help with fine-mapping of 

associated regions. Larger sample sizes of GWAS, epigenomic studies and eQTL studies in all 

populations will improve identification and explanation of additional LOAD loci while increasing the 

applicability of these findings to a larger group of individuals. This could be accomplished by a push 

for facilitating data sharing and global collaboration within the field of Alzheimer’s disease genetics. 

The current work provided genetic support for the role of immune cells and microglia in LOAD, 

identified previously unidentified LOAD-associated regions, prioritized causal genes of interest and 

highlighted the importance of collaboration to discern the biological process that mediates LOAD 

pathology. 

 

Methods 

Quality control and meta-analysis 

The data from the participants in this study were obtained from freely available summary statistics 

and from genotype-level data. Additional cohorts have been obtained since our previous analysis8 

(as well as an increased deCODE sample); these cohorts contain 12,968 additional cases and 488,616 

additional controls. An overview of the cohorts is available in Supplementary Table 1. Informed 

consent was obtained from all participants and we complied with all relevant ethical regulations. A 

full description of each dataset, the quality control (QC) procedures and the analysis protocols are 

available in the Supplementary Information. In short, each dataset underwent initial QC, imputation, 

logistic/linear regression with at least sex and principal components as covariates and post-

regression QC of the summary statistics using EasyQC39. If necessary, the data were converted to 

build GRCh37 before QC using the UCSC LiftOver tool40. During post-regression QC, each dataset was 

matched to the Haplotype Reference Consortium (HRC) or 1KG reference panel, and variants with 

absolute allele frequency differences >0.2 compared to the reference panel were removed. Variants 



with an imputation quality score <0.8, minor allele count (MAC) <6, N <30 or absolute beta or s.e. 

>10 were removed. Low MAF variants were removed; low MAF41 was defined as <12×N√. All 

datasets were meta-analyzed using mv-GWAMA (https://github.com/Kyoko-wtnb/mvGWAMA), a 

sample size weighted method previously developed in Jansen et al.8. The option to account for 

overlapping individuals was not utilized because no datasets were expected to contain overlapping 

samples and the estimates of overlapping samples (genetic covariance intercepts) were unreliable 

due to low heritability of the datasets. The effective sample size of the full meta-analysis for power 

estimates was calculated by assuming the individuals in the UKB proxy data with phenotype values 

<1 are controls and ≥1 are cases. 

 

Genomic risk loci definition 

We used FUMA v.1.3.6a (ref. 42) (http://fuma.ctglab.nl) to annotate and functionally map variants 

included in the meta-analysis. Genomic risk loci were defined around significant variants (<5 × 10−8); 

the genomic risk loci included all variants correlated (R2 > 0.6) with the most significant variant. The 

correlation estimates were defined using 1KG European reference information43. The 1KG European 

reference panel was chosen over the UKB44 10K reference panel because the meta-analysis included 

individuals from a range of European ancestries and this diversity would be better reflected in the 

1KG European sample than the primarily British UKB sample. Genomic risk loci within 250 kilobases 

(kb) of each other are incorporated into the same locus. Previously unidentified genomic risk loci are 

loci that do not overlap with variants identified as significant in previous studies of 

LOAD8,10,45,46,47,48,49,50. Regional plots were generated using LocusZoom51 and 1KG reference 

information. 

 

Heritability and genetic correlation 

LDSC regression9 (https://github.com/bulik/ldsc) was used to estimate the liability scale heritability 

of the nonproxy LOAD meta-analysis (UKB data excluded). The nonproxy LOAD meta-analysis (43,725 

cases and 717,979 controls) was performed in the same way as the full meta-analysis described 

above. The UKB data (N = 364,859) were excluded because LDSC liability scale heritability estimates 

are sensitive to sample prevalence and the UKB data were generated with a continuous phenotype 

and therefore a sample prevalence could not be perfectly estimated if the UKB data were included. 

Heritability estimates were converted to a liability scale using the LOAD population prevalence of 

0.05 and a sample prevalence of 0.0574041885. LDSC12 was also used to determine the genetic 

correlation between a meta-analysis of the nonproxy LOAD datasets and the UKB proxy LOAD 

dataset. Precalculated LD scores for LDSC were derived from the 1KG European reference population 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). Heritability and 

genetic correlation estimates were calculated using HapMap3 variants only. Further genetic 

correlations were determined using the full meta-analysis and LD Hub13 

(http://ldsc.broadinstitute.org/), where all 855 traits were tested using the HapMap3 variants 

(http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip). The heritability estimate of 

Lambert et al.10 summary statistics was obtained from LD Hub. 

 

Gene-based and gene-set analyses 



Genome-wide gene association analysis was performed using MAGMA v.1.08 (ref. 15) 

(http://ctg.cncr.nl/software/magma). All variants in the GWAS outside the major histocompatibility 

complex (MHC) region (GRCh37: 6:28,477,797–33,448,354) that positionally map within one of the 

19,019 protein coding genes were included to estimate the significance value of that gene. Genes 

were considered significant if the P value was <0.05 after Bonferroni correction for 19,019 genes. All 

MAGMA analyses utilized 1KG43 LD information. MAGMA gene-set analysis was performed where 

variants map to 15,496 gene sets from the MSigDB v.7.0 database52. Gene sets were considered 

significant if the P value was <0.05 after Bonferroni correction for the number of tested gene sets. 

Forward selection of significantly associated gene sets was performed using MAGMA v.1.08 

conditional analysis53. Initially the most significant gene set was selected as a covariate and the 

remaining gene sets were analyzed. The most significant gene set from this conditional analysis was 

added as a covariate in addition to the previous gene set, and a new analysis was run. This process 

was repeated until no gene set met the significance threshold (PBonferroni < 0.05). MAGMA tissue 

specificity analysis was performed in FUMA using 30 general tissue type gene expression profiles 

(from GTEx v.8). Tissues were considered significant if the P value was <0.05 after Bonferroni 

correction for 30 tissues. 

 

FUMA cell type specificity analysis16 utilizes the MAGMA gene association results to identify cell 

types enriched in expression of trait-associated genes. We focused on brain and immune-related cell 

types, with the inclusion of pancreas as a control, therefore selecting the following scRNA-seq 

datasets: Allen_Human_LGN_level1 (ref. 54), Allen_Human_LGN_level2 (ref. 54), 

Allen_Human_MTG_level1 (ref. 54), Allen_Human_MTG_level2 (ref. 54), 

DroNc_Human_Hippocampus55, DroNc_Mouse_Hippocampus55, 

GSE104276_Human_Prefrontal_cortex_all_ages56, GSE67835_Human_Cortex57, 

GSE81547_Human_Pancreas58, Linnarsson_GSE101601_Human_Temporal_cortex59, 

MouseCellAtlas_all60, PBMC_10x_68k61 and PsychENCODE_Adult62. Within-dataset corrected 

results were reported to indicate which single cells are most likely to be disease relevant. The gene-

based and gene-set analyses were also performed without the larger APOE region (19:40,000,000–

50,000,000). 

 

Gene mapping 

The individual genomic risk loci were mapped to genes using FUMA v.1.3.6a42 using positional 

mapping and eQTL mapping. For positional mapping, all variants within 10 kb of a gene in the 

genomic risk locus were assigned to that gene. For eQTL mapping, variants were mapped to genes on 

the basis of significant eQTL interactions in a collection of immune and brain tissues. Brain tissue 

eQTLs were used due to the importance of brain tissue in LOAD pathology, and immune tissue/cell 

eQTLs were used for gene mapping because MAGMA tissue specificity analysis highlighted immune 

tissues as tissues of interest. The brain and immune tissues eQTLs used for mapping were: Alasoo 

naive macrophage63, BLUEPRINT monocyte64, BLUEPRINT neutrophil64, BLUEPRINT T-cell64, 

BrainSeq Brain65, CEDAR B-cell66, CEDAR monocyte, CEDAR neutrophil66, CEDAR T-cell66, Fairfax B-

cell67, Fairfax naive monocyte68, GENCORD T-cell69, Kasela CD4 T-cell70, Kasela CD8 T-cell70, Lepik 

Blood71, Naranbhai neutrophil72, Nedelec macrophage73, Quach monocyte74, Schwartzentruber 

sensory neuron75, TwinsUK blood76, PsychENCODE brain62, eQTLGen blood cis and trans77, 

BloodeQTL blood78, BIOS Blood79, xQTLServer blood80, CommonMind Consortium brain81, 

BRAINEAC brain82, GTEX v.8 lymphocytes, brain, spleen and whole blood. The genes that mapped to 



previously unidentified loci were searched in a database (https://diegomscoelho.github.io/AD-

IsoformSwitch/index.html)23 to identify whether they were differentially expressed in bulk brain 

tissue of patients with LOAD compared to controls. 

 

Colocalization 

All variants within 1.5 megabases (Mb) of the lead variant of each genomic risk loci were used in the 

colocalization analysis. The GWAS data and eQTL data were trimmed so that all variants overlap. 

Colocalization was performed per gene using coloc.abf from the Coloc R package18. Default priors 

were used for prior probability of association with the GWAS data and eQTL data. The prior 

probability of colocalization was set as 1 × 10−6 as recommended83. Nominal P, sample size and MAF 

from the GWAS data and eQTL data were used in all the colocalization analyses. Colocalizations with 

a posterior probability >0.8 were considered successful colocalizations. eQTL data from all tissues 

except microglia were obtained from the eQTL catalog84. The microglia data were obtained from 

Young et al.85. 

 

Fine-mapping 

Fine-mapping was performed with susieR v.0.9.1 (ref. 86) on all variants within 1.5 Mb of the lead 

variant of each genomic risk loci. The APOE and HLA-DRB1 (MHC) regions were excluded from fine-

mapping due to the complicated LD structure. The sample size of the fine-mapping reference panel 

should be proportional to the sample size of the data being fine-mapped. A good-sized reference 

panel is 10% to 20% of the sample size of the data87. UKB data were used as a reference panel for 

the fine-mapping because it had the largest sample size of the available reference panels and was the 

only available European reference panel to fulfill the criteria for a good-sized reference panel. The 

reference panel was ~10% of the size of the GWAS data. An LD matrix was generated using 100,000 

individuals in R v.3.4.3 (ref. 88). The 100,000 individuals were chosen for each locus as the top 

100,000 people with the most genotyped variants in the locus to maintain the highest number of 

variants in the fine-mapping. Only the top 100,000 were chosen for computational feasibility and to 

maintain as many variants as possible while having a large reference panel. The meta-analysis data 

were trimmed to match the variants included in the LD reference. The maximum number of causal 

variants in the region was set to 10. The susieR credible sets are reported in Supplementary Table 12. 

The allele frequency in the UKB data and meta-analysis data of all the variants in the fine-mapping 

analyses were compared to identify outliers. No variants included in the confidence set or credible 

set had an allele frequency difference >0.2. 

 

Functional enrichment of significantly associated regions 

All enrichment analyses were performed using a Fisher’s exact test (fisher.test) implemented in R 

v.4.0.1 (ref. 88). The enrichment analyses compared all variants within the genomic risk loci 

(excluding the MHC region; GRCh37: 6:28,477,797–33,448,354) to all other variants present in the 

meta-analysis (excluding of the MHC region). Enrichment of active chromatin was performed using 

ROADMAP Core 15-state model annotation89 obtained from 

https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMa

rks/jointModel/final/all.mnemonics.bedFiles.tgz. For each of the 127 cell types, all variants within the 

analysis were annotated with one of the 15 states using the R package Genomic Ranges90. All 



variants annotated with a state <8 were defined as being within active chromatin. The enrichment of 

active chromatin within the specified region was performed for each of the cell types and the 

resulting P values were corrected for 127 tests using Bonferroni correction. To perform enrichments 

of functional consequences, variants were annotated with ANNOVAR91 using ANNOVAR and FASTA 

sequences for all annotated transcripts in RefSeq Gene92. Enrichments were considered significant if 

the P value was <0.05 after Bonferroni correction for 11 functional consequences. The enrichment 

plots were generated using the R package ggplot2 (ref. 93). 

 

Statistics and reproducibility 

No statistical method was used to predetermine sample size, all available datasets were included in 

the meta-analysis. Exclusion of data was predetermined and based on quality control procedures 

outlined in the Supplementary Information. Phenotype values were assigned on the basis of 

(parental) diagnoses so the experiments were not randomized. The investigators were not blinded to 

allocation during experiments and outcome assessment. Scientific findings were compared to 

findings from previous LOAD meta-analyses. Replication of previously identified loci is reported in the 

text and in the Supplementary Information. 

 

Reporting Summary 

Further information on research design is available in the Nature Research Reporting Summary linked 

to this article. 

 

Data availability 

Access to raw data can be requested via the Psychiatric Genomics Data Access portal 

(https://www.med.unc.edu/pgc/shared-methods/open-source-philosophy/), UK Biobank 

(www.ukbiobank.ac.uk), or 23andMe. Restriction of raw data is to protect the privacy of participants. 

Summary statistics from IGAP (https://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php) and Finngen 

(https://www.finngen.fi/en/access_results) can be obtained from their respective online portals. 

Summary statistics from the meta-analysis excluding 23andMe are available at 

https://ctg.cncr.nl/software/summary_statistics. Access to the full set, including 23andMe results, 

can be obtained after approval from 23andMe is presented to the corresponding author. Approval 

can be obtained by completion of a Data Transfer Agreement. The Data Transfer Agreement exists to 

protect the privacy of 23andMe participants. Please visit https://research.23andme.com/dataset-

access/ to initiate a request. Summary statistics of the primary microglia eQTLs are also available 

from EGA (accession no.: EGAD00001005736). MSigDB gene sets are available online 

(https://www.gsea-msigdb.org/gsea/msigdb/) and integrated in FUMA (https://fuma.ctglab.nl/). 

 

Code availability 

The code used to perform the analyses is available at https://github.com/dwightman/PGC-ALZ2. All 

software used in the analyses is freely available online. 
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