8 research outputs found

    Latest results on Jovian disk X-rays from XMM-Newton

    Get PDF
    We present the results of a spectral study of the soft X-ray emission (0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were obtained during two observing campaigns with XMM-Newton in April and November 2003. While the level of the emission remained approximately the same between April and the first half of the November observation, the second part of the latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very similar, and apparently correlated increase, in time and scale, was observed in the solar X-ray and EUV flux. The months of October and November 2003 saw a period of particularly intense solar activity, which appears reflected in the behaviour of the soft X-rays from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras, are all well fitted by a coronal model with temperatures in the range 0.4-0.5 keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86 keV): these are characteristic lines of solar X-ray spectra at maximum activity and during flares. The XMM-Newton observations lend further support to the theory that Jupiter's disk X-ray emission is controlled by the Sun, and may be produced in large part by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of Planetary and Space Scienc

    The plasma universe: a coherent science theme for Voyage 2050

    Get PDF
    In review of the White Papers from the Voyage 2050 process1 and after the public presentation of a number of these papers in October 2019 in Madrid, we as White Paper lead authors have identified a coherent science theme that transcends the divisions around which the Topical Teams are structured. This note aims to highlight this synergistic science theme and to make the Topical Teams and the Voyage 2050 Senior Committee aware of the wide importance of these topics and the broad support that they have across the worldwide science community

    Charge Transfer Reactions

    Full text link

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link

    Magnetospheric Science Objectives of the Juno Mission

    Full text link
    In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and enture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets

    Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals

    No full text
    corecore