2,050 research outputs found

    On Generalized Additive Models for Representation of Solar EUV Irradiance

    Get PDF
    In the context of space weather forecasting, solar EUV irradiance specification is needed on multiple time scales, with associated uncertainty quantification for determining the accuracy of downstream parameters. Empirical models of irradiance often rely on parametric fits between irradiance in several bands and various solar indices. We build upon these empirical models by using Generalized Additive Models (GAMs) to represent solar irradiance. We apply the GAM approach in two steps: (a) A GAM is fitted between FISM2 irradiance and solar indices F10.7, Revised Sunspot Number, and the Lyman-α solar index. (b) A second GAM is fit to model the residuals of the first GAM with respect to FISM2 irradiance. We evaluate the performance of this approach during Solar Cycle 24 using GAMs driven by known solar indices as well as those forecasted 3 days ahead with an autoregressive modeling approach. We demonstrate negligible dependence of performance on solar cycle and season, and we assess the efficacy of the GAM approach across different wavelengths

    Eigenvalue Estimation of Differential Operators

    Full text link
    We demonstrate how linear differential operators could be emulated by a quantum processor, should one ever be built, using the Abrams-Lloyd algorithm. Given a linear differential operator of order 2S, acting on functions psi(x_1,x_2,...,x_D) with D arguments, the computational cost required to estimate a low order eigenvalue to accuracy Theta(1/N^2) is Theta((2(S+1)(1+1/nu)+D)log N) qubits and O(N^{2(S+1)(1+1/nu)} (D log N)^c) gate operations, where N is the number of points to which each argument is discretized, nu and c are implementation dependent constants of O(1). Optimal classical methods require Theta(N^D) bits and Omega(N^D) gate operations to perform the same eigenvalue estimation. The Abrams-Lloyd algorithm thereby leads to exponential reduction in memory and polynomial reduction in gate operations, provided the domain has sufficiently large dimension D > 2(S+1)(1+1/nu). In the case of Schrodinger's equation, ground state energy estimation of two or more particles can in principle be performed with fewer quantum mechanical gates than classical gates.Comment: significant content revisions: more algorithm details and brief analysis of convergenc

    A TLE-based Algorithm for Correcting Empirical Model Densities during Geomagnetic Storms

    Get PDF
    Neutral densities increase up to 800% during geomagnetic storms. Satellite two-line element sets (TLEs) show increased orbital decay during geomagnetic storms from increased drag

    The NuSTAR Extragalactic Surveys: unveiling rare, buried AGNs and detecting the contributors to the peak of the Cosmic X-ray Background

    Get PDF
    We report on the results of active galactic nuclei (AGNs) detection by NuSTAR performed in three extragalactic survey fields (COSMOS, UDS, ECDFS) in three hard bands, namely H1 (8-16 keV), H2 (16-24 keV) and VH (35-55 keV). The aggregated area of the surveys is ∌2.7\sim 2.7 deg2^2. While a large number of sources is detected in the H1 band (72 at the 97%97\% level of reliability), the H2 band directly probing close to the peak of the Cosmic X-ray Background (CXB) returns four significant detections, and two tentative, although not significant, detections are found in the VH band. All the sources detected above 16 keV are also detected at lower energies. We compute the integral number counts for sources in such bands, which show broad consistency with population synthesis models of the CXB. We furthermore identify two Compton-thick AGNs, one in the COSMOS field, associated with a hard and faint Chandra source, and one in the UDS field, never detected in the X-ray band before. Both sources are at the same redshift z∌1.25z \sim 1.25, which shifts their Compton-hump into the H1 band, and were previously missed in the usually employed NuSTAR bands, confirming the potential of using the H1 band to discover obscured AGNs at z>1z > 1 in deep surveys.Comment: 12 pages, 5 figures, accepted for publication in The Astrophysical Journa

    An Optical Study of Stellar and Interstellar Environments of Seven Luminous and Ultraluminous X-Ray Sources

    Get PDF
    We have studied the stellar and interstellar environments of two luminous X-ray sources and five ultraluminous X-ray sources (ULXs) in order to gain insight into their nature. Archival Hubble Space Telescope images were used to identify the optical counterparts of the ULXs Ho IX X-1 and NGC 1313 X-2, and to make photometric measurements of the local stellar populations of these and the luminous source IC 10 X-1. We obtained high-dispersion spectroscopic observations of the nebulae around these seven sources to search for He II lambda-4686 emission and to estimate the expansion velocities and kinetic energies of these nebulae. Our observations did not detect nebular He II emission from any source, with the exception of LMC X-1; this is either because we missed the He III regions or because the nebulae are too diffuse to produce He II surface brightnesses that lie within our detection limit. We compare the observed ionization and kinematics of the supershells around the ULXs Ho IX X-1 and NGC 1313 X-2 with the energy feedback expected from the underlying stellar population to assess whether additional energy contributions from the ULXs are needed. In both cases, we find insufficient UV fluxes or mechanical energies from the stellar population; thus these ULXs may be partially responsible for the ionization and energetics of their supershells. All seven sources we studied are in young stellar environments and six of them have optical counterparts with masses >~7 M_sun; thus, these sources are most likely high-mass X-ray binaries.Comment: 30 pages, 9 figures. Numerous minor revisions, primarily to more accurately cite earlier work by Pakull and Mirioni, and to correct typographical errors. Removed a misleading sentence in the Introduction (re: X-ray photoionization by ULXs). Accepted for publication in The Astrophysical Journal. Figures have been reduced in resolution for space requirements; full-resolution figures may be requested by email to [email protected]

    An Optical Study of Stellar and Interstellar Environments of Seven Luminous and Ultraluminous X-Ray Sources

    Get PDF
    We have studied the stellar and interstellar environments of two luminous X-ray sources and five ultraluminous X-ray sources (ULXs) in order to gain insight into their nature. Archival Hubble Space Telescope images were used to identify the optical counterparts of the ULXs Ho IX X-1 and NGC 1313 X-2, and to make photometric measurements of the local stellar populations of these and the luminous source IC 10 X-1. We obtained high-dispersion spectroscopic observations of the nebulae around these seven sources to search for He II lambda-4686 emission and to estimate the expansion velocities and kinetic energies of these nebulae. Our observations did not detect nebular He II emission from any source, with the exception of LMC X-1; this is either because we missed the He III regions or because the nebulae are too diffuse to produce He II surface brightnesses that lie within our detection limit. We compare the observed ionization and kinematics of the supershells around the ULXs Ho IX X-1 and NGC 1313 X-2 with the energy feedback expected from the underlying stellar population to assess whether additional energy contributions from the ULXs are needed. In both cases, we find insufficient UV fluxes or mechanical energies from the stellar population; thus these ULXs may be partially responsible for the ionization and energetics of their supershells. All seven sources we studied are in young stellar environments and six of them have optical counterparts with masses >~7 M_sun; thus, these sources are most likely high-mass X-ray binaries.Comment: 30 pages, 9 figures. Numerous minor revisions, primarily to more accurately cite earlier work by Pakull and Mirioni, and to correct typographical errors. Removed a misleading sentence in the Introduction (re: X-ray photoionization by ULXs). Accepted for publication in The Astrophysical Journal. Figures have been reduced in resolution for space requirements; full-resolution figures may be requested by email to [email protected]

    A Hard Look at NGC 5347: Revealing a Nearby Compton-thick AGN

    Get PDF
    Current measurements show that the observed fraction of Compton-thick (CT) active galactic nuclei (AGN) is smaller than the expected values needed to explain the cosmic X-ray background. Prior fits to the X-ray spectrum of the nearby Seyfert-2 galaxy NGC 5347 (z = 0.00792, D = 35.5 Mpc ) have alternately suggested a CT and Compton-thin source. Combining archival data from Suzaku, Chandra, and—most importantly—new data from NuSTAR, ... See full text for complete abstrac

    Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure

    Full text link
    The standard inflationary version of the origin of the cosmic structure as the result of the quantum fluctuations during the early universe is less than fully satisfactory as has been argued in [A. Perez, H. Sahlmann, and D. Sudarsky, Class. Quantum Grav., 23, 2317, (2006)]. A proposal is made there of a way to address the shortcomings by invoking a process similar to the collapse of the quantum mechanical wave function of the various modes of the inflaton field. This in turn was inspired on the ideas of R. Penrose about the role that quantum gravity might play in bringing about such breakdown of the standard unitary evolution of quantum mechanics. In this paper we study in some detail the two schemes of collapse considered in the original work together with an alternative scheme, which can be considered as "more natural" than the former two. The new scheme, assumes that the collapse follows the correlations indicated in the Wigner functional of the initial state. We end with considerations regarding the degree to which the various schemes can be expected to produce a spectrum that resembles the observed one.Comment: 18 pages, 9 figure

    Knowledge of Objective 'Oughts': Monotonicity and the New Miners Puzzle

    Get PDF
    In the classic Miners case, an agent subjectively ought to do what they know is objectively wrong. This case shows that the subjective and objective ‘oughts’ are somewhat independent. But there remains a powerful intuition that the guidance of objective ‘oughts’ is more authoritative—so long as we know what they tell us. We argue that this intuition must be given up in light of a monotonicity principle, which undercuts the rationale for saying that objective ‘oughts’ are an authoritative guide for agents and advisors

    Interstitials, Vacancies, and Supersolid Order in Vortex Crystals

    Full text link
    Interstitials and vacancies in the Abrikosov phase of clean Type II superconductors are line imperfections, which cannot extend across macroscopic equilibrated samples at low temperatures. We argue that the entropy associated with line wandering nevertheless can cause these defects to proliferate at a sharp transition which will exist if this occurs below the temperature at which the crystal actually melts. Vortices are both entangled and crystalline in the resulting ``supersolid'' phase, which in a dual ``boson'' analog system is closely related to a two-dimensional quantum crystal of He4^4 with interstitials or vacancies in its ground state. The supersolid {\it must} occur for B≫B×B\gg B_\times, where B×B_\times is the decoupling field above which vortices begin to behave two-dimensionally. Numerical calculations show that interstitials, rather than vacancies, are the preferred defect for B≫ϕ0/λ⊄2B\gg \phi_0/\lambda_\perp^2, and allow us to estimate whether proliferation also occurs for B\,\lot\,B_\times.The implications of the supersolid phase for transport measurements, dislocation configurations and neutron diffraction are discussed.Comment: 53 pages and 15 figures, available upon request, written in plain TE
    • 

    corecore