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On Generalized Additive Models for Representation of Solar
EUV Irradiance
Daniel A. Brandt1 , Erick F. Vega1, and Aaron J. Ridley2

1Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI, USA, 2Department of Climate and
Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract In the context of space weather forecasting, solar EUV irradiance specification is needed on
multiple time scales, with associated uncertainty quantification for determining the accuracy of downstream
parameters. Empirical models of irradiance often rely on parametric fits between irradiance in several bands and
various solar indices. We build upon these empirical models by using Generalized Additive Models (GAMs) to
represent solar irradiance. We apply the GAM approach in two steps: (a) A GAM is fitted between FISM2
irradiance and solar indices F10.7, Revised Sunspot Number, and the Lyman‐α solar index. (b) A second GAM
is fit to model the residuals of the first GAM with respect to FISM2 irradiance. We evaluate the performance of
this approach during Solar Cycle 24 using GAMs driven by known solar indices as well as those forecasted
3 days ahead with an autoregressive modeling approach.We demonstrate negligible dependence of performance
on solar cycle and season, and we assess the efficacy of the GAM approach across different wavelengths.

Plain Language Summary Modeling solar irradiance at extreme ultraviolet wavelengths is very
important for describing the behavior of the upper atmosphere. Many empirical models represent solar
irradiance by describing it as linearly‐dependent on measurements of other quantities that are very strongly
correlated with it. These methods have shown great promise, but require building their models from many
sources of data. We build upon these methods by showing that using only four sources of data (three solar
proxies and irradiance from the FISM2 model), solar extreme ultraviolet irradiance can be modeled in different
wavelengths efficiently. We use Generalized Additive Models (GAMs) for our approach, which are used to
describe irradiance in terms of a sum of smooth functions of solar proxies. We show how this approach can be
used to forecast solar EUV irradiance.

1. Introduction
Accurately describing space weather effects on the upper atmosphere is of critical importance for space situational
awareness, satellite collision avoidance, safeguarding the electrical power grid, and protecting astronauts (Bussy‐
Virat et al., 2018). A key component of space weather operations involves describing the variability and effects of
solar extreme ultraviolet (EUV) radiation, nearly all of which is absorbed in the thermosphere and serves as the
dominant driver of energy input into the upper atmosphere during geomagnetic quiet times (P. Richards
et al., 1981; Stolarski et al., 1975). Solar EUV irradiance additionally plays a central role in modulating the global
variation of total electron content (TEC) (Hocke, 2008; Lean et al., 2011) and in driving the thermosphere
response at multiple timescales (Guo et al., 2007).

Until SOLSTICE aboard the Upper Atmospheric Research Satellite (UARS) in 1991 (Reber et al., 1993), the
SOlar Radiation and Climate Experiment (SORCE) in 2003 (Rottman, 2005), and the TIMED/SEE mission in
2001 (Woods, Bailey, et al., 2000), regular and semi‐continuous measurements of solar EUV irradiance were not
obtainable. As a result, solar proxies well‐correlated with solar EUV irradiance which can be measured from the
ground, such as F10.7 (Tapping, 2013), have seen regular usage due to their operational availability, and are
routinely used as inputs for Ionosphere‐Thermosphere models such as NRLMSISE 2.0 (Emmert et al., 2021) and
Thermosphere Ionosphere Electrodynamics General Circulation Model (Cai et al., 2022). While these solar
proxies have demonstrated applicability in downstream modeling for representing thermospheric and ionospheric
climatology, they suffer from some important limitations, including:

1. Each solar index is best described as a proxy for solar processes occurring either in the photosphere, chro-
mosphere, transition region, corona, or a combination of some of these regions, limiting their ability to capture
the entire swath of variation throughout the entire EUV range (To et al., 2023).
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2. The emissions most strongly correlated with each solar index are absorbed in different regions of the ther-
mosphere and mesosphere, resulting in either increasingly complex parameterization for their ingestion into
atmospheric models and non‐trivial impacts on quantification of uncertainty in derived thermospheric tem-
peratures and densities (Thayer et al., 2021).

3. The indices struggle to capture variation of solar irradiance both beyond timescales of ∼27 days and on the
order of hours (de Wit et al., 2008; Tapping & Charrois, 1994), and do not capture the influence of solar flares
inherent in EUV measurements (Pawlowski & Ridley, 2008).

These limitations have led to observed discrepancies in model performance when using different indices,
especially when representing TEC (Tariku, 2019). More significantly, in the context of blackouts in solar proxies,
it is possible to reconstruct those proxies for operational usage using solar radio measurements in neighboring
wavelengths (Elvidge et al., 2023), which provides additional robustness for space situational awareness, but
exacerbates the effects of the already inherent limitations of the index due to imperfect reconstruction.

In response to some of these concerns, empirical models of solar EUV irradiance have been developed, the
outputs of which can be ingested into coupled atmospheric models such as the Global Ionosphere Thermosphere
Model (GITM) (Ridley et al., 2006) or SAMI3 (Huba & Liu, 2020). The EUVACmodel (P. Richards et al., 1994)
is one such model that has seen regular used since its inception, and was succeeded by HEUVAC (P. G. Richards
et al., 2006), which featured increased spectral resolution and flexible wavelength binning. Both models were
developed based on a parameterization of F10.7, 81‐day averaged F10.7 and the F74113 quiet sun reference
spectrum derived from rocket measurements during the 1960s and 1970s (Heroux & Hinteregger, 1978). Other
paradigms include the GOES‐R EUVS model developed by the National Oceanic and Atmospheric Adminis-
tration (NOAA) (Thiemann et al., 2019), the SOLAR2000 empirical solar irradiance model and forecast tool,
which was implemented with the development of the E10.7 solar EUV proxy derived from the time‐dependent
integrated solar EUV flux at the top of the terrestrial atmosphere (Tobiska et al., 2000), and the Flare Irradi-
ance Spectrum Model (FISM) (Chamberlin et al., 2007). The current iteration, FISM2 (Chamberlin et al., 2020),
includes a daily component and a flare component, and improved empirical modeling due to the incorporation of
measurements from the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variability Experiment (EVE),
SORCE/X‐ray Photometer System (XPS), and SORCE/Solar Stellar Irradiance Comparison Experiment (SOL-
STICE). FISM2's daily component models the solar spectral irradiance at a given wavelength as a sum of an
unchanging solar minimum reference spectrum for all days and times, a contribution due to variability due to the
solar cycle, and a contribution due to variability associated with the solar rotation. The solar cycle and solar
rotation components use the centered 108‐day smoothed value of proxies and measurements, but must rely on the
average of the previous 54 days for near‐real time estimations.

This work builds upon the empirical modeling paradigm by introducing a novel framework for parameterizing
solar EUV irradiance using Generalized Additive Models (GAMs), a class of models that relate a response
variable linearly to a sum of smooth functions of predictor variables of interest (Hastie, 2017). This class of
models allows for the capturing of the proportional impacts of various solar processes represented by proxies on
each wavelength band, and natively support intuitive quantification of uncertainty in modeled irradiances due to
the relating of the distribution of expected values of the response variable to the predictor variables through a link
function. Since reliable measured solar EUV irradiance records do not extend before the early 1990s, we leverage
FISM2 model results for the entire period considered, and construct a GAM to represent integrated solar EUV
irradiance across all the considered wavelength bands using that data, after which we construct a second GAM to
model residuals with respect to native FISM2 outputs. The results of the GAM approach are evaluated using
known historical space weather drivers, and are compared to TIMED/SEE and SDO/EVE measurements in select
wavelength bands. GAM results are also evaluated using space weather drivers hindcasted 3 days into the future
using an Autoregressive Modeling approach during two 30‐day periods in SC24: one corresponding to low solar
activity and one corresponding to high solar activity. The contributions this study include (a) the application of a
rigorous mathematical modeling method for representing of solar EUV irradiance, and (b) the initial verification
of this method for forecasting over time scales routinely utilized in the space weather community through
hindcasts performed over low and high solar activity periods.

We note that the relative weakness of Solar SC24 in comparison to the preceding Solar Cycles may affect the
results. While we foresee this effect being minimal since solar indices during this time show a weakness that is
similar to the same degree, we acknowledge that it is of enough significance to warrant investigating the cycle‐by‐
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cycle modulations in indices and drivers in more detail in a future study. Further, we have limited inclusion of
TIMED/SEE results to 16 bands between 280 and 1,170 Å due to the fact that TIMED/SEE did not make spectral
measurements below about 280 Å; the TIMED/SEE Level 3 irradiance below 280 Å is derived from a model,
subjecting it to model error. Additionally, above 1,170 Å, FISM2 is calibrated against SORCE/SOLSTICE, which
is more accurate than TIMED/SEE, and disagreement between FISM2 and TIMED/SEE in this range is expected
and systematic due to FISM2's higher absolute accuracy. Likewise, due its limited wavelength range, we only
consider 21 wavelength bands corresponding to SDO/EVE, which suffers much less from inaccuracies due to
degradation than TIMED/SEE, since it undergoes regular calibrations.

The obtained GAM functions can be used for: (a) operational assessment of the current state of solar irradiance,
specifically when there are data outages, (b) improved thermosphere and ionosphere modeling and uncertainty
quantification of the atmospheric state, and (c) forecasting future values of solar EUV irradiance across multiple
wavelength bands and on multiple time scales. They represent an innovation in that they do not require estimates
of time‐averaged solar indices centered on the given day in order to be used for nowcasting or forecasting.

The paper is organized as follows: first, the data pre‐processing strategy is outlined. Then, the GAM approach for
modeling irradiance is described, followed by a description of Autoregressive Models. After that, a description of
the techniques used for validation of results is outlined. Thereafter, irradiance estimation results are presented and
assessed by comparison against native FISM2 outputs, TIMED/SEE, and SDO/EVE. Finally, the results are
discussed and conclusions drawn.

2. Methodology
2.1. Data Pre‐Processing

We considered F10.7, revised Sunspot Number (SSN) and Lyman‐α as drivers for the GAMs fit to FISM2, and we
compared GAM outputs to native FISM2, as well as TIMED/SEE and SDO/EVE measurements in specific
wavelength bands. These indices were chosen primarily due to their widespread use and familiarity within the
space weather community. Additionally, since indices serve as proxies primarily for the upper chromosphere/
lower corona and solar photosphere (Johnson et al., 2023; Nusinov & Katyushina, 1994), constraining model
parameterization to these parameters demonstrates the versatility of the GAM approach in its ability to address the
problem of solar EUV modeling even with limited information. For this reason, we have not included other
proxies such as the Mg‐II index (taken as the ratio between chromospheric Mg II h and k lines at 2,795.6 and
2,802.7 Å respectively, and the weakly varying photospheric wings) or Ca‐II index, even though their inclusion
may increase accuracy by capturing the dynamics of slowly varying corona (Schonfeld et al., 2019) and better
describing variation within the entire chromosphere (Viereck et al., 2004). The selected indices were obtained
from the NASA OMNIWeb Data Explorer (Papitashvili & King, 2020). We used cubic smoothing splines to
interpolate over gaps in the OMNIWeb solar index data, using the Python CSAPS package (De Boor & De
Boor, 1978). The FISM2, Level 3 TIMED/SEE, and Level 3 SDO/EVE irradiances were obtained from the LASP
Interactive Solar Irradiance Datacenter (LASP, 2005) and we used nearest‐neighbor interpolation to upsample
them from their native daily resolution to the hourly resolution of the OMNIWeb solar indices. Additionally, the
FISM2 and TIMED/SEE irradiances were arranged into 59 wavelength bins used by GITM for ease of com-
parison and for eventual ingestion into GITM (see Table 1 below). Due to the lower accuracy of TIMED/SEE
compared to FISM2 outside of 280–1,170 Å, only 16 non‐singular wavelength bins between 280 and 1,170 Å
were used from TIMED/SEE for additional comparisons. In the case of SDO/EVE, the Level 3 data are bounded
between wavelengths centered at 65–1,055 Å, in 10 Å intervals; we consider 21 of these wavelength bands in our
analysis. In Table 1 below, the salmon‐colored bins correspond to those for which there was SDO/EVE data
alone, the orchid‐colored bins correspond to where there was both TIMED/SEE and SDO/EVE data, and the sky
blue‐colored bin corresponds to where there was TIMED/SEE data alone. FISM2 data was available in every bin.

Binning was performed as follows: For each spectrum at a given time, irradiance at the wavelength nearest to each
of the singular wavelengths was obtained. These constitute the singular wavelengths, or “lines”; here the irra-
diance was assigned the single line. Afterward, the irradiance in each wavelength range (the remaining non‐
singular bins) was calculated by summing the irradiance in that bin. This was done by adding the values of
irradiance corresponding to the wavelengths between the boundaries of each bin and multiplying by the bin width.
Figure 1 shows the EUV spectrum for FISM2, TIMED/SEE, and SDO/EVE during solar maximum in SC24,
obtained via our binning procedure.
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2.2. Generalized Additive Models

Conventional linear models (Nelder &Wedderburn, 1972) assume a response
variable y follows an exponential family distribution with mean μ, which may
be a nonlinear function of βTX, where β is a vector of coefficients and
X = [X1, X2, …, Xn] are covariates (predictor variables):

g(E[y|X|]) = β0 +∑
n

i=1
βiXi, (1)

where g is the link function relating the predictor variables to the expected
value of the dependent variable y.

GAMs, by contrast, are linear models in which the response variable depends
linearly on unknown smooth functions of several predictor variables. They
take the following form:

g(E[y|X|]) = β0 +∑
n

i=1
fi (Xi), (2)

where fi are “feature functions” which may be constructed from various
families of bases functions. In the context of this paper, the solar EUV irra-
diance in a given band y was regressed using the predictor variables Day‐of‐
the‐year (DOY), F10.7, SSN, and Lyman‐alpha. We specifically include
DOY as a model driver in order to represent seasonal variations in the solar
indices. The regression was carried out using the GAM framework, which
required the fitting of univariate spline functions for each those predictor
variables. We assumed a normal/Gaussian error model for the responses y
which naturally leads to a least‐squares fitting problem. In our analysis, we
proceeded with our approach as follows:

1. For SC20 through the beginning of SC23, an initial GAM Y was fit be-
tween solar EUV irradiance represented by FISM2 and the F10.7 index,
revised Sunspot Number (SSN) (Clette et al., 2015), and the Lyman‐α
index (Woods, Tobiska, et al., 2000) using penalized B‐splines and the
Normal distribution.

2. A second GAMs ζ to capture the behavior of initial model residuals was fit
during the remainder of SC23.

3. SC24 integrated solar EUV irradiance was modeled using the F= Y − ζ for
known solar inputs (termed models FK; likewise, YK refers to models Y
driven by known solar inputs).

4. Relative irradiance error ɛ with respect to native FISM2 was compared
from FK, and assessed for solar cycle, seasonal, and solar activity
dependence. This was also done for TIMED/SEE Level 3 irradiances in 16
wavelength bands between 280 and 1,170 Å and SDO/EVE Level 3 ir-
radiances in 21 bands between 65 and 1,055 Å.

5. The approach was applied again for 59 different wavelength bands, to
assess the behavior of the mean, standard deviation, kurtosis, and skew of
relative error ɛ as a function of wavelength band i. These bands were
selected due to their usage in GITM (a subset of the bands corresponding
to those used by EUVAC is also used by SAMI3 (Huba & Liu, 2020)).
This step provided us with models Fi = Yi − ζi, i ∈ [0, 59].

6. The above steps were applied for a 3‐day ahead Autoregressive Model
hindcasts of the solar indices mentioned in Step 1, which were used to
drive the GAMs. This was done for two 30‐day periods in SC24: one

Table 1
Solar EUV Irradiance Wavelength Bins Considered for Analysis: The
Salmon‐Colored Rows Are for Bins Which There Was SDO/EVE Data Alone,
the Orchid‐Colored Rows Are for Bins for Which There Was TIMED/SEE
and SDO/EVE Data, and the Sky Blue Row Is for Where There Was Only
TIMED/SEE Data

Lower boundary (Å) Upper boundary (Å) Bin center (Å)

1 2 1.5

2 4 3

4 8 6

8 16 12

16 23 19.5

23 32 27.5

32 50 41

50 100 75

100 150 125

150 200 175

200 250 225

256.3
284.15

250 300 275

303.31
303.78

300 350 325

368.07

350 400 375

400 450 425

465.22

450 500 475

500 550 525

554.37
584.33

550 600 575

609.76
629.73

600 650 625

650 700 675

703.31

700 750 725

765.15
770.41
789.36

750 800 775

800 850 825

850 900 875

900 950 925

977.02

950 1,000 975

1,025.72
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during the low solar activity in the ascending phase and one during high
solar activity during the peak.

The initial fitting for Yi was performed on solar index and FISM2 data be-
tween the beginning SC20 (10 October 1964) and the peak of SC23 (taken as
23 January 2002). The fitting of ζiwas done between the Yi residuals and solar
indices between the peak of SC23 and the remainder of its descending phase
(up to 1 December 2008). The final models Fiwere evaluated over the entirety
of SC24 (1 December 2008–1 December 2019). The GAMs were imple-
mented with the aid of the recently‐developed PyGAM package (Servén &
Brummitt, 2018).

An example of the results of the fitting procedure in two different wavelength
bands (centered at 19.5 and 225.0 Å is shown) is shown in Figure 2 below.
The solar indices used to perform the fits also shown, along with the GAM
outputs for the same period of time corresponding to the training set used for
fitting.

Figure 3 shows the results of the fitting procedure for ζi for the wavelength
bands centered at 19.5 and 225 Å. We observe that the aim of the inclusion of
ζi is to account for any trends in the residuals related to season or solar ac-
tivity. While we acknowledge the limitations of fitting ζi only during the
descending Phase of SC23, we elected to restrict the fitting to that period of
time in order to demonstrate the effectiveness of the approach with use of
limited information, and to avoid the problem of over fitting.

Figure 4 shows the results of the fitting procedure in the same two bands, but viewing up close a time period
during the descending phase of SC22, between 1 March 1993 and 1 December 1996. From this figure can be seen
qualitatively how the inclusion of the second GAM ζi improves the overall correspondence between the model
outputs and FISM2, while avoiding over‐fitting.

For added clarification on the construction of the GAM, we show Partial Dependence Functions (PDPs) for
GAMs Yi for wavelengths centered at 19.5 and 225 Å in Figures 5 and 6 below. PDPs are widely used within the
field of interpretable Machine Learning to explain the marginal effect of single features on a model prediction
(Friedman, 2001). In the case of the present study, the PDPs are identical with the aforementioned feature
functions used to construct the GAM. Thus, in the examples shown, they illustrate the proportional functional
contributions to solar EUV irradiance in a specific band due to a specific feature represented by either DOY (a

Table 1
Continued

Lower boundary (Å) Upper boundary (Å) Bin center (Å)

1,031.91

1,000 1,050 1,025

1,050 1,100 1,075

1,100 1,150 1,125

1,150 1,200 1,175
1,215.67

1,200 1,250 1,225
1,250 1,300 1,275
1,300 1,350 1,325
1,350 1,400 1,375
1,400 1,450 1,425
1,450 1,500 1,475
1,500 1,550 1,525
1,550 1,600 1,575
1,600 1,650 1,625
1,650 1,700 1,675
1,700 1,750 1,725

Note. FISM2 data were available in every bin.

Figure 1. The solar EUV spectrum on 30 April 2010: (left) the spectrum in base units, and (right) the spectrum on a logarithmic scale. In both figures, blue represents
FISM2 estimates, cyan represents TIMED/SEE measurements, and red represents SDO/EVE measurements.
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proxy for season) or a solar index. The versatility of the GAM approach is demonstrated by the varied nature of
PDPs for different wavelengths. This behavior is expected, since each model driver is not expected to retain the
same relationship with each wavelength band.

In particular, for the examples shown, we observed oscillatory behavior between DOY and its respective
contribution to solar EUV centered at 19.5 Å that, by inspection, was characteristic of a dominant period between
75 and 100 days in duration. This was contrasted with the same PDP for 225 Å, which showed not only similar
oscillations on a shorter characteristic period of ∼50 days in duration, but an annual trend that reached a trough
just prior to the summer solstice. These oscillations were observed in every other wavelength (not shown), but we
attribute them to a combination of (a) residual variations unable to be accounted for by the solar drivers mani-
festing as variations in the DOY PDPs and (b) noise. This attribution stems from the fact that the FISM2 data itself
has been normalized to 1 AU, and as a result, oscillations are unlikely to be due to variations in Earth‐Sun
Distance or eccentricity associated with seasonal changes. That the oscillations are an order of magnitude
smaller than the variations (having <∼10% effect on the system) seen in the solar drivers suggests that the effect,
although observable, is minor, and likely can be attenuated by the inclusion of other solar indices and the neglect
of DOY as a model input altogether, something we will investigate in subsequent work.

We also observed unique behavior for the PDPs of the solar indices for each wavelength. For 19.5 Å, the PDP for
F10.7 is nearly linear, and only fails the to meet the description of a monotonically increasing function at values

Figure 2. Time series data for solar EUV irradiance centered at 19.5 Å (top), solar EUV irradiance centered at 225.0 Å. (second from the top), F10.7 (middle), SSN
(second from the bottom), and Lyman‐α (bottom). The top two solar EUV plots show data for FISM2 and for the GAMs Yi (initial fit) and Fi (initial fit—model for
residuals). The model fits were performed between the beginning of SC20 and the peak of SC23.
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beyond F10.7 = 300. This, however, was not observed with the wavelength bin centered at 225 Å which behaved
nearly like a negative quadratic function until F10.7 = 300. The PDP for SSN at 19.5 Å showed an inverse
relationship, while at 225 Å, this inverse relationship persisted only until SSN ∼ 140, after which it reversed,
terminating in a sharp, nearly exponential relationship above SSN∼ 400. Lastly, the PDP for Lyman‐αwas a non‐
monotonic function at 19.5 Å, but it was a monotonically increasing function at 225 Å.

2.3. Autoregressive Models

Autoregressive (AR) models represent random processes by modeling values at future time steps as a weighted
sum of values at previous time steps. Conventionally, for some ARmodel of order n, values of a quantity x at time
t are given by

xt =∑
n

i=1
βixt− i + δt, (3)

where the βi are the parameters of the model and δt is white noise (Box et al., 2015). ARmodels have been used for
probabilistic forecasting of the disturbance storm time index (Chandorkar et al., 2017), predicting MeV electron
fluxes in the outer radiation belt (Sakaguchi et al., 2015) and numerous AR approaches have been utilized for
forecasting solar proxies (Chattopadhyay & Chattopadhyay, 2012; Du, 2020; Lean et al., 2009; Si‐Qing

Figure 3. The results of fitting the GAM ζi to model residuals for solar EUV irradiance centered at 19.5 Å and at 225 Å. The time period over which this fit occurred
corresponds to the descending phase of SC23.
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et al., 2010). In this study, we highlight the applicability of the GAM approach for forecasting by mirroring the
approach of Du (2020) to hindcast the solar indices F10.7, Lyman‐α, and SSN 3 days into the future. These
hindcasted indices are then used to drive the GAMs in SC24 over a 30‐day period (just beyond the duration of a
single solar rotation) during Solar Minimum (1 December 2008 through 29 December 2008) as well as Solar
Maximum (1 June 2014 through 29 June 2014).

In our approach, we relied on an AR paradigm known as the Autoregressive Integrated Moving Average
(ARIMA), which not only models the variable of interest as a function of its own prior values, but utilizes a
moving average to model the regression error as a linear combination of error terms whose values occurred
contemporaneously in the past. ARIMA models take advantage of non‐stationarity (the mean and variance of a
process vary as a function of time) and thus are suitable for forecasting solar indices, since they have been found to
exhibit heteroscedasticity (Wang et al., 2018). ARIMA models have a general form given by the following:

xt = α + β1xt− 1 + β2xt− 2 +⋯ + βpxt− p + ϕ1δt− 1 + ϕ2δt− 2 +⋯ + ϕqδt− q, (4)

where α is a constant, βi are AR model parameters for an AR model order of p, ϕi are moving average model
parameters up to order q, and δi are lagged forecast errors.

A key component of ARIMA models is that they employ differencing in order to enforce stationarity. This in-
volves subtracting the previous value from the current value a total of d times. In the present study, during the
application of our AR approach, we focused on forecasting daily solar indices, and set p = 33, d = 1, and q = 2,
similar to the methods for short‐term F10.7 AR forecasting recommended by Du (2020). An example of the solar
indices hindcasted during SC24 is shown in Figures 7 and 8 below.

Figure 4. A closer examination (during the descending phase of SC22) of the same model results as shown in the top two plots of Figure 2.
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We utilized the Python Statsmodels package to performmodel fitting and forecasting (Seabold & Perktold, 2010).
We briefly consider the percentage difference between average values of the residuals for each hindcasted solar
index, using the expression below:

P =
xi − xf

[
(xi + x f )

2 ]

× 100, (5)

where xi is the initial average value of the residuals (in this case corresponding to low solar activity) and xf is
the final average value of the residuals (in this case corresponding to high solar activity). Overall, we
observed that the hindcasted indices exhibited lower prediction error during low solar activity, with values of
the residuals increasing by a percentage difference of P ≈ 179.43%, 156.7%, and 158.97% for F10.7, SSN,
and Lyman‐α, respectively, from low solar activity to high solar activity. We suspect this is primarily due to
increased uncertainty owing to the impulsive nature and sporadic occurrence of active regions on the solar
disk during high solar activity as suggested by Du (2020) and observed in F10.7 by Wilson et al. (1987),
especially due to the fact that on time scales in excess of 1–2 days, magnetic structures tend to dominate in
affecting fluctuations in solar irradiance (Solanki et al., 2003). Despite this, a detailed investigation and
compensation for this behavior is beyond the scope of this paper. For more detail on AR models, we refer the
reader to Shumway et al. (2017).

Figure 5. PDPs for the GAM Yi used to model solar EUV irradiance centered at 19.5 Å. Clockwise from the top‐left: the PDP for DOY, for F10.7, SSN, and Lyman‐α. In
each plot, the PDP itself is in blue, and the red dashed lines are the corresponding 95% confidence bands.
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2.4. Validation

To assess the accuracy of the estimated irradiances, we followed an analog of the analysis of Gondelach &
Linares (2021). This involved comparing estimated irradiances with native FISM2 estimates of solar EUV
irradiance. Due to non‐trivial degradation issues with TIMED/SEE that have worsened in severity since late 2017,
and due to the limited wavelength coverage for SDO/EVE, we avoid using both of those sources as controls for
the evaluation of the GAM results. Measurements for TIMED/SEE and SDO/EVE are included in select results
for qualitative comparison only. For the comparisons, we define the relative irradiance error as follows:

ε =
ĪEST − ĪFISM2

ĪFISM2
× 100%, (6)

where ĪEST and ĪFISM2 indicate the daily average estimated and measured solar irradiance. For additional insight
into the behavior of the relative irradiance error, we generated histograms of ɛ by wavelength band along with
corresponding fits to a skew normal distribution, and we assessed variation of ɛ as a function of Day‐of‐the‐Year
(DOY) and solar activity proxied by F10.7.

We wish to note that particularly at wavelengths below 6 Å, use of Equation 6 becomes less insightful, since the
characteristic irradiances are on the order of 10− 8 W/m2/nm, and discrepancies of two or three orders of
magnitude can result in values of ɛ that rapidly grow beyond hundreds of percent. Since these discrepancies are
expected (as it is routine for the irradiance in these lower bands to often be measured at 0, or nearly equivalent to it
in numerical precision), we also make use of the Normalized Root Mean Square Error (NRMSE) when evaluating
performance as a function of wavelength band. RMSE is defined as follows (Wilks, 2011):

Figure 6. The same as Figure 5, but for solar EUV irradiance centered at 225 Å.

SpaceWeather 10.1029/2023SW003680

BRANDT ET AL. 10 of 23

 15427390, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003680 by M
ichigan T

echnological U
niversity, W

iley O
nline L

ibrary on [19/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 7. Solar indices hindcasted 3 days into the future with an ARIMA approach using (p, d, q) = (33, 1, 2), between 1
December 2008 and 30 December 2008 of SC24.

Figure 8. The same as Figure 7, but between 1 June 2014 and 1 July 2014 of SC24.
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

k=1
( ĪEST − ĪFISM2)

√

, (7)

where n represents the number of data points, and the remaining variables are defined as they are in Equation 6.
We performed normalization in the same manner as Lean et al. (2009) by multiplying by 100 and dividing by the
mean value of the observed values (i.e., NRMSE = 100RMSE

<ĪFISM2> ). In the determination of this statistic, we minimized
the influence of outliers by computing the centered 24‐hr rolling NRMSE with respect to FISM2, and considering
the median values obtained across all considered wavelength bands.

3. Results
Results for the GAM approach are first given for integrated solar EUV irradiance across all 59 wavelength bands.
We consider how well results from FK correlate with FISM2, as well as the distribution of relative irradiance error
ɛ over SC24. Thereafter is detailed the behavior of the variance and skew of ε̄ as a function of band, followed by
an example of forecasting 3 days ahead with the AR approach.

3.1. Integrated Solar EUV

Figure 9 shows the overall result of the GAM approach using known solar indices. With the exception of the very
end of the declining phase, we observe consistent correspondence between FK and FISM2 throughout the entirety
of SC24.

Figure 9. Results of the GAM approach applied to solar EUV irradiance integrated across all considered wavelengths,
showing the entirety of the training, correction, and test sets (top) and a zoom in on the test set alone (bottom). In the top, the
training region over which Y was fitted is shaded gray, the correction region over which ζ is fitted is shaded yellow, and the
test region over which F is evaluated is shaded green. The pale orange shaded region in both figures corresponds to the 95%
confidence interval for FK.
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For Y and ζ, we use the default condition that spline terms have a penalty on
their second derivative, which encourages the feature functions to be
smoother. In both cases, the regularization parameter λ, which controls the
strength of this penalty, was set to 0.6 for all terms. The number of samples η
used to fit each model differed due to the training set for Y being ∼5.5 times
greater in length than the set used for fitting ζ. We obtained important sta-
tistics for Y and ζ, including deviance explained, scale, and McFadden's
pseudo R‐squared (McFadden, 1973). Deviance, as detailed by Wood (2017),
is defined as

D = 2[l( β̂max) − l( β̂)]ϕ, (8)

where l( β̂max) is the maximized likelihood of the saturated model (a model with one parameter for each data
point, so that the data are fitted exactly), l( β̂) is the maximized likelihood of the fitted model, and ϕ is the scale
parameter. The scaled deviance is given by

D∗ = D/ϕ (9)

In the case of Y and ζ, ϕ is estimated during model fitting, and represents the residual standard error squared, due
to the use of the Normal distribution. The deviance explained Ξ then corresponds to the representing D* as the
proportion of total deviance explained by the current model. We also computed McFadden's adjusted pseudo R‐
squared (ρ2adj) as the coefficient of determination for Y and ζ, allowing us to determine the proportion of variation
of integrated solar EUV irradiance predicted by the fitted model parameters, while controlling for the number of
those parameters (more detail may be found in Long and Freese (2006)). Succinctly, this statistic gives us an idea
of how much variation in each of the model parameters affects changes in the irradiance. Table 2 below shows the
values of η, Ξ, and ρ2adj for both Y and ζ.

While we expect values of ρ2adj to run lower than conventional R
2, as shown in Figure 5.5 of McFadden (1973), we

note that for both Y and ζ, values of ρ2adj are sufficiently high (especially for the former case) to show excellent
model fit for both parameterizing FISM2 irradiance and the associated residuals with respect to native FISM2
with a GAM, respectively.

Next, we consider how well the GAM correlates with native FISM2 over SC24. Figure 10 shows the correlations
for F and FISM2. The correlation is significantly positive with a value of Pearson's Correlation Coefficient of

0.992. We observe that the linear fit between the outputs of F and that of
native FISM2 suggests a tendency for overestimation that slightly increases as
a function of solar irradiance. We attribute this primarily to the relatively
short period over which ζ was fit in comparison to Y, though we note that the
overestimation grows only from ~0.0003 to ~0.001 W/m2 throughout the
entire range of irradiance values, showing a high degree of consistency.

We also considered the variation of relative irradiance error ɛ over the solar
cycle in general, as shown on the left in Figure 11. To illustrate the
improvement afforded by the inclusion of ζ, we show the relative error over
SC24 between both YK and native FISM2 as well as FK and native FISM2.

For added clarity we generated histograms of ɛ for YK and FK with respect to
FISM2, and skew normal distributions were fit in order to elucidate the sta-
tistical behavior of the ɛ (on the right of Figure 11). The resulting parameters
describing each distribution can be found in Table 3. We consider in partic-
ular the shape (α), location (ξ), scale (ω), kurtosis (κ), and skewness (γ). We
observe a growth in the value of α after applying ζ, which, along with a
decreased value of κ, indicate that the effect of the inclusion of the second
GAM is to drawmean error closer to zero and constraint the majority of errors
to clustering around values in the vicinity of ~2.5%. The negative excess

Table 2
Statistics for the Components of F for Representing Integrated Solar EUV
Irradiance, Rounded to Three Decimal Places

Integrated solar EUV irradiance GAM statistics

Model η Ξ ρ2adj

Y 327,049 0.981 0.981

ζ 59,160 0.476 0.476

Figure 10. The linear relationship between the GAM outputs from FK and
FISM2, for solar EUV irradiance integrated across all 59 wavelength bands.
The blue line corresponds to the line‐of‐best fit, and the red shaded region
corresponds to the 95% confidence interval.
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kurtosis shown by the value of κ for FK also indicates that the inclusion of ζ results in a reduction of the likelihood
of errors attaining values more extreme that corresponding to a normal distribution.

3.2. Dependency of ɛ on Season and Solar Activity

To evaluate dependency on season and solar activity, we sorted values of ɛ by DOY and F10.7 (Figure 12). Linear
fits to the sorted data resulted in slopes (m) and intercepts (b) suggesting a slightly negative correlation (Pearson's
R ≈ −0.303) between season and relative error, while the converse is true regarding dependency on solar activity
(Pearson's R ≈ 0.134). We note that the clustering of values of ɛ plays a role in affecting the resulting linear fits,
particular for dependency on solar activity. The coefficient of determination R2 for the linear fit of ɛ to DOY was
~0.092, while it was ~0.018 for F10.7. These values indicate no statistically significant relationship between DOY
or solar activity and relative irradiance error.

3.3. Behavior of ɛ as a Function of Wavelength

Next, we consider the behavior of mean (μεi) and standard deviation (σεi ), kurtosis (κεi ), and skew ( γεi) relative
irradiance error as a function wavelength band. We additionally compare the values corresponding to FKi with
those of TIMED/SEE and SDO/EVE with respect to FISM2, in select bands. We show these results for wave-
lengths between 4 and 1,750 Å, inclusive (Figure 13). For the bin centered at 1.5 Å, we observed that
με0 ≈ 125.18, σε0 ≈ 1546.73, κε0 ≈ 613.29, γε0 ≈ 23.30, and for the bin centered at 3 Å, we observed that
με1 ≈ 355.44, σε1 ≈ 4800.59, κε1 ≈ 28.22, γε1 ≈ 955.11. These values, particularly for μεi and σεi, differed
significantly than those of the other bands, hence their suppression in Figure 13. In these two wavelength bands,
FISM2 irradiances routinely were at values of zero, outside of which they would oscillate according to a pattern
typical of neighboring wavelength bands and solar indices. By virtue of its construction, the GAM models
quantities smoothly, and therefore would occasionally return negative values of irradiance in these bands over
regions where it the prediction should be zero. In these cases, we manually zeroed the model estimate. Unfor-

tunately in cases where FISM2 values were nonzero but exceedingly small
(on the order of (10− 11W/m2 and less) and the GAM result was greater by 1 or
2 orders of magnitude, and in the converse, we observed a dramatic increase
in the estimates of relative irradiance error. In these bands, when temporal
averaging is employed over a rolling 30‐day period, the values of μεi in
particular, are reduced to 87.07% for the bin centered at 1.5 Å, and to 84.55%
for the bin centered at 3.0 Å (Figures 14 and 15). This is expected, as the effect
of the temporal averaging is to act as a low‐pass filter that excludes high
frequencies corresponding to the most extreme deviations of model results

Figure 11. Left: Relative error (ɛ) for YK and FK with respect to FISM2 integrated solar EUV irradiance throughout the
entirety of SC24. These results demonstrate laudable performance at under 5% relative error for FK throughout nearly the
entirety of SC24. They additionally show that these improvements are possible in part due to the action of ζ in reducing error.
Right: Relative error (ɛ) histograms for YK (top) and for FK (bottom), with respect to FISM2 integrated solar EUV irradiance
for the entirety of SC24. The action of ζ is observable in its moving the center of the distribution of errors closer to zero for FK

compared to YK, as well as reducing the width of the distribution.

Table 3
Statistics for Skew Normal Distributions of ɛ for YK and FK, Rounded to
Three Decimal Places

Integrated solar EUV irradiance ɛ skew normal statistics

Model α ξ ω κ γ

YK 1.878 0.201 1.829 0.657 0.424

FK 2.595 − 0.551 1.971 − 0.515 0.296
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from FISM2; the temporal averaging has the effect of reducing the impact of outliers. It is likely that the use of a
non‐Gaussian error model in the fitting of the GAMs could serve to reduce the effect of these outliers.

In order to understand the performance of the approach of the present work without recourse to temporal aver-
aging, we also considered NRMSE values across bands. We first considered values of the rolling NRMSE
computed in centered 24‐hr windows (not shown). In the wavelength bands centered at 1.5 and 3.0 Å, we still
observed occasional large spikes in NRMSE similar to that of ɛ, so we initially computed the median NRMSE
value as a function of band in order to minimize the influence of outliers (Figure 16). We observe a behavior of the
median values of NRMSE similar that of μεi, with values for the GAM approach lower than that of SDO/EVE in
only wavelength band (centered at 275 Å) and lower than TIMED/SEE in all wavelength bands. Regarding the
first two wavelength bands, we observe median NRMSE values of ∼59% for both. Though these are the highest
values observed for all wavelengths, we note that they remain below the highest median values for SDO/EVE and
TIMED/SEE, which at 1,075 Å were ∼83% and ∼199%, respectively.

Regarding μεi, we observe no values in excess of 10% for the GAMs FKi in any wavelength band. In comparison,
TIMED/SEE and SDO/EVE show values of μεi in excess of in excess of 10% in 8 and 3 of their 16 and 21
wavelength bands, respectively. Only a single wavelength band centered at 475 Å, was μεi for TIMED/SEE lower
than that of FKi , and then only by an absolute difference of ɛi ∼ 0.24. In comparison, values of μεi for SDO/EVE
were lower than that of FKi in 7 of the 21 considered bands, with the most appreciable performance exhibited by
SDO/EVE at 125, 175, 225, and 275 Å. We highlight that the values of μεi we observe are indicative of a sys-
tematic tendency of TIMED/SEE to overestimate FISM2, owing in part to continued degradation and reliance on
calibrations corresponding to rocket measurements for which the most recent rocket flight was 2012. The daily
calibrations performed for SDO/EVE partially contribute to its greater correspondence to FISM2 in several
wavelength bands, such as that centered at 375 Å, as shown in Figure 17.

Results for σεi show that for FKi , there is a general downward trend as wavelength increases, and for 46 of the 59
wavelength bands considered (∼78%) we observed values of σεi under 5%. These values show tight clustering of

Figure 12. ɛ for integrated solar EUV irradiance across 59 wavelength bins as a function of season (top) and ɛ as a function of
F10.7 (bottom). The coloring of the data in each plot relates to the density of the data points, which in each plot, have been
distributed over 50 bins in both axes.
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Figure 13. Clockwise from the top left: Mean, Standard Deviation, Kurtosis, and Skew of relative irradiance error as a function of wavelength band, for GAMs FKi ,
TIMED/SEE, and SDO/EVE, with respect to FISM2. The bands shown exclude the first two from Table 1, and are only those between 4 and 1,750 Å inclusive. The only
values not shown on a symmetric log scale are σεi.

Figure 14. (Left—top and bottom) Solar EUV irradiance in the bin centered at 1.5 Å over SC24. The top shows native FISM2 outputs in blue and GAM outputs in
orange. The bottom shows the a rolling 30‐day average of the same. (Right—top and bottom) Histograms of the ɛ between FK0 and FISM2. The top shows the original
results before temporal averaging, and the bottom shows the results after a rolling centered 30‐day average was applied to both FISM2 and FK0 outputs. We note that
histograms were constructed using 50 bins set within the widest range afforded by the 5th and 95th percentiles of both data sets.
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distributions of relative irradiance error for FKi that indicative of the most favorable performance for the GAM
approach in particular above 250 Å. For TIMED/SEE, all values of σεi were in excess of 2%, whereas for SDO/
EVE, values of σεi all were below those of TIMED/SEE and but in excess of FKi in all but 2 wavelength bands (75
and 1,075 Å).

For κεi, for F
K
i , we observe a general decrease of kurtosis as wavelength increases, with distributions of ɛi having

positive excess kurtosis (leptokurticity) in 34 of the 59 bands and negative excess kurtosis (platykurticity) in 25 of
the 59 bands. By inspection, we observe a cutoff at ∼1,000 Å below which leptokurticity dominates and above
which we only observe platykurticity. Given that platykurtic distributions produce fewer and less extreme outliers
than the normal distribution, we observe again that values of κεi show that the GAM approach is again more
favorable as wavelength increases. For TIMED/SEE and SDO/EVE, we observe platykurticity in only 1 and 3 of
their respective considered bands.

Figure 15. The same as Figure 14 but for EUV irradiance in the bin centered 3 Å.

Figure 16. Median rolling daily NRMSE as a function of wavelength band, during SC24.
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Regarding skew, we observe variable skew for FKi that is primarily positive below ∼1,050 Å, after which it is
remarkably consistent in the vicinity of ∼0.35. Positive skewness is observed in 39 of the 59 bands for FKi , with a
trend that mirrors that of μεi. This indicates that over ∼66% of the solar EUV spectrum considered, relative
irradiance error is most likely to deviate in the positive direction, a result indicative of a minimal but consistent
tendency for the GAMs to overestimate FISM2.

3.4. Short‐Term Forecasting

The suitability for the GAM approach for forecasting was evaluated through hindcasts of daily solar EUV
irradiance integrated between 1 and 1,750 Å. These hindcasts were performed during 30 days of low solar activity
during the beginning of SC24 and 30 days high solar activity during the peak of SC24. As before, we assess this
suitability first for solar EUV irradiance integrated across all 59 wavelength bands, followed by an evaluation of
the behavior of ɛ as a function of wavelength.

In the case of integrated daily solar EUV irradiance, we observe that due to the behavior of the residuals in the
hindcasted solar indices, values of ɛ are lower for low solar activity (average of − 0.24%) than high solar activity
(average of 1.68%) (Figure 18). The movement of the mean value of ɛ from negative to positive from low to high
solar activity indicates the predilection of the GAM approach, as applied in the present work, to generally
overestimate values of the solar irradiance during high solar activity when forecasting. We also observe a shift in
the standard deviation σɛ from − 0.512% to 3.5%, corresponding to an increase by a percentage difference of
∼148.95%. In absolute terms, this change of P is nearly identical to that corresponding to the mean, which grew by
a percentage difference of 150%. No absolute values of ɛ were observed to exceed 10%, and were comparable to
values resulting from successful companion techniques such as the Air Force Data Assimilative Photospheric
Flux Transport (ADAPT), which relies on comprehensive estimates of the solar magnetic field distribution to
derive estimates of EUV irradiance (Arge et al., 2010; Henney et al., 2015).

In closing, we consider values of ɛ as a function of wavelength band, for both low and high solar activity
(Figure 19). We focus in particular on the quantities μεi and σεi, which show the most variability as wavelength
increases. We note that values of μεi often show opposite sign from low to high solar activity. In particular, during

Figure 17. Time series of solar EUV irradiance centered at 375 Å, during a period of time corresponding to uninterrupted
coverage provided by SDO/EVE during SC24.
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Figure 18. Time series of hindcasted integrated solar EUV irradiance during low solar activity (top) and high solar activity (bottom) during SC24. The light shaded
orange region denotes the 95% Confidence Interval for the GAM results. The y‐axes have been harmonized to show irradiance values that span 0.007 W/m2 (left axis)
and values of ɛ between − 6% and 10% (right axis).

Figure 19. Mean (left) and standard deviation (right) of ɛi as a function of wavelength band, during low (blue) and high (red) solar activity during SC24, on a symmetric
logarithmic scale.
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low solar activity, values of μεi are most often negative below 375 Å (associated with higher values of σεi), they
oscillate between the boundaries of ±5% between 375 and 1,000 Å, while they remain negative but increasingly
close to zero above 1,000 Å. For high solar activity, values of σεi show the same decreasing trend as a function of
increasing wavelength that is observed at low solar activity, but their baseline is notably higher, indicating a
spread in errors indicative of lower accuracy during the peak of the solar cycle. Additionally, although the
oscillatory behavior is again observed between 375 and 1,000 Å, the spread is slightly larger, extending up to
±10%, while values below 375 Å and above 1,000 Å show systemic overestimation.

Overall, we observed the most favorable performance at low solar activity for wavelengths in excess of 1,000 Å,
while for wavelengths below 1,000 Å, results indicate that forecasted values are on average likely to have absolute
relative errors at most in the vicinity of 10% when forecasts are on the order of 3 days. This performance,
however, becomes less reliable at wavelengths below 10 Å, where difficulty forecasting sharp declines in irra-
diance in the vicinity of zero can result in significant uncertainty. Overall, and coupled with the NRMSE results in
Figure 16, we observe favorable results for the GAM approach in all wavelength bands that are comparable with
and routinely exceed the accuracies of the measurements from TIMED/SEE and SDO/EVE, with forecasting
errors that are comparable with companion approaches that rely on much more comprehensive information. This
speaks to the fidelity of the GAM approach in retaining the statistical characteristics of the FISM2 estimates even
when parameterized with a constrained set of solar drivers.

4. Conclusions and Discussion
When fitted appropriately, the GAM approach demonstrates itself as robust, statistically well‐grounded, and
accurate for representing solar irradiance in multiple wavelength bands. As shown for the case concerning in-
tegrated solar EUV irradiance, a robust GAM may be constructed between integrated solar EUV irradiance from
FISM2 and only three solar indices with minimal sacrifice of statistical characteristics of estimated irradiance.
This demonstrates the power GAMs for capturing non‐linear behavior with limited drivers The present work also
highlights the degree to which FISM2 remains a powerful and versatile empirical paradigm for modeling of solar
EUV. FISM2's capacities are inherent in its construction using three solar irradiance data sets (from SDO/EVE,
SORCE/SOLSTICE, and SORCE/XPS), three solar proxies (F10.7, Mg‐II, and Lyman‐α), and four additional
solar proxies primarily from emission lines measured by SDO/EVE. When the GAM approach is applied in two
steps: (a) an initial fit between solar indices and FISM2 outputs, and (b) a second fit between solar indices and
residuals between the initial fit and FISM2, the resulting model that is the sum of the two fits can be run entirely
independent of FISM2 for the purposes of nowcasting and forecasting. The approach yields robust performance
over an entire solar cycle, as shown by absolute mean values of ɛ under 10% across the overwhelming majority of
wavelength bands considered.

We additionally observe that combined with well‐principled autoregressive model approaches for forecasting
solar drivers, the GAM performs well in the context of short‐term 3‐day forecasts, with the resulting absolute
forecast errors again regularly attaining values below 10% for both low and high solar activity, on par with
companion techniques that rely on estimates of the solar magnetic field or utilize neural networks (Stevenson
et al., 2022). As noted by Chamberlin et al. (2020), FISM2 models solar cycle variations using a 108‐day
smoothed value of proxies and measurements, centered on the present day, but in an operational context, must
resort to use of the previous 54 days, plus whatever days after that are available. The GAM approach presented in
this work circumvents this difficulty through parameterization only on the daily average of underlying solar
drivers, making it particularly appropriate for operational use. While our approach has demonstrated suitability
for nowcasting and forecasting solar EUV irradiance, it experiences some limitations, particularly in the context
of heightened forecast errors during solar maximum and at wavelengths below 6 Å. This is not surprising, since
this wavelength range is dominated by solar flares, which are significantly more challenging to predict than
quiescent irradiance changes. We contend that these drawbacks are attributable to (a) the choice of solar drivers—
improved performance may be achieved with the inclusion of other drivers such as Ca‐II, Mg‐II, S10, allowing for
greater capturing the influence of solar chromospheric activity and solar active regions, which are particularly
important during solar maximum and (b) the fitting of ζ only during the descending phase of a single solar cycle.
Use of the descending phase only results in difficulty capturing variability of the residuals to a similar degree as Y
captures the variability of integrated solar EUV irradiance due the usage of fewer samples. We contend that the
fitting of ζ over multiple solar cycles would thus decrease kurtosis and scale of the resulting skew normal
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distribution of ɛ. Additionally, the choice of a Gaussian error model during the fitting of the GAM may be
primarily responsible for the decreased performance observed below 6 Å. Improved performance may be ob-
tained using a heavy‐tailed error model instead (Lee & Nelder, 2006). Likewise, given that it has been determined
that the mutual relationship between solar indices such as F10.7 and SSN show quasi‐linearity that is dependent
on the degree of temporal averaging (Clette, 2021), it is worth investigating how such averaging can lead to
improved representation of solar EUV using the GAM approach in wavelengths below 6 Å that have shown
difficult to model with a high degree of accuracy in the present work. In order to contextualize this investigation,
we contend that it should be placed in the context of how the resulting irradiance estimates affect downstream
ionospheric and thermospheric parameters in a coupled thermosphere‐ionosphere model. We additionally are
aware of the constraints in accuracy related to the AR approach to forecast model drivers. As such, we will
consider the evaluation of improvements to the approach of the present work with a multi‐step and/or dynamic
solar driver forecasting approach as described by Daniell and Mehta (2023).

We emphasize that the principal power of this approach is its applicability for forecasting. GAMs constructed in
various wavelength bands in the manner described in this paper enable forecasts of solar EUV irradiance directly
from a reduced number of solar indices as drivers. With robust approaches to solar index forecasting, the GAM
approach can be used to obtain much more comprehensive and accurate solar EUV forecasts for ingestion into
thermospheric models, allowing for the reduction of thermospheric density errors. This is crucial especially for
short‐term forecasts that are needed to reduce the uncertainty of atmospheric density for satellite collision
avoidance (Bussy‐Virat et al., 2018).

Future work will involve the improvement of the GAM approach with the use of rigorous statistical methods such
as Feature Ordering by Conditional Independence (FOCI) (Azadkia & Chatterjee, 2021), and extended appli-
cation through principled medium and long‐term solar driver forecasting for prediction of solar EUV irradiance
on multiple timescales with quantified uncertainties.

Data Availability Statement
Solar indices F10.7, revised Sunspot Number, and Lyman‐αwere obtained via NASAOMNIWeb (Papitashvili &
King, 2020). FISM2 and TIMED/SEE data were obtained via LISIRD, which is curated by the University of
Colorado, Boulder (LASP, 2005). All of the processed data and all code used to analyze the data can be found on
Zenodo: https://doi.org/10.5281/zenodo.8250196.
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