249 research outputs found
Variation in grouping patterns, mating systems and social structure: what socio-ecological models attempt to explain
Socio-ecological models aim to predict the variation in social systems based on a limited number of ecological parameters. Since the 1960s, the original model has taken two paths: one relating to grouping patterns and mating systems and one relating to grouping patterns and female social structure. Here, we review the basic ideas specifically with regard to non-human primates, present new results and point to open questions. While most primates live in permanent groups and exhibit female defence polygyny, recent studies indicate more flexibility with cooperative male resource defence occurring repeatedly in all radiations. In contrast to other animals, the potential link between ecology and these mating systems remains, however, largely unexplored. The model of the ecology of female social structure has often been deemed successful, but has recently been criticized. We show that the predicted association of agonistic rates and despotism (directional consistency of relationships) was not supported in a comparative test. The overall variation in despotism is probably due to phylogenetic grade shifts. At the same time, it varies within clades more or less in the direction predicted by the model. This suggests that the model's utility may lie in predicting social variation within but not across clades
Constraints on the Progenitor System of the Type Ia Supernova SN 2011fe/PTF11kly
Type Ia supernovae (SNe) serve as a fundamental pillar of modern cosmology,
owing to their large luminosity and a well-defined relationship between
light-curve shape and peak brightness. The precision distance measurements
enabled by SNe Ia first revealed the accelerating expansion of the universe,
now widely believed (though hardly understood) to require the presence of a
mysterious "dark" energy. General consensus holds that Type Ia SNe result from
thermonuclear explosions of a white dwarf (WD) in a binary system; however,
little is known of the precise nature of the companion star and the physical
properties of the progenitor system. Here we make use of extensive historical
imaging obtained at the location of SN 2011fe/PTF11kly, the closest SN Ia
discovered in the digital imaging era, to constrain the visible-light
luminosity of the progenitor to be 10-100 times fainter than previous limits on
other SN Ia progenitors. This directly rules out luminous red giants and the
vast majority of helium stars as the mass-donating companion to the exploding
white dwarf. Any evolved red companion must have been born with mass less than
3.5 times the mass of the Sun. These observations favour a scenario where the
exploding WD of SN 2011fe/PTF11kly, accreted matter either from another WD, or
by Roche-lobe overflow from a subgiant or main-sequence companion star.Comment: 22 pages, 6 figures, submitte
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
Reductions in co-contraction following neuromuscular re-education in people with knee osteoarthritis
Background
Both increased knee muscle co-contraction and alterations in central pain processing
have been suggested to play a role in knee osteoarthritis pain. However, current
interventions do not target either of these mechanisms. The Alexander Technique
provides neuromuscular re-education and may also influence anticipation of pain. This
study therefore sought to investigate the potential clinical effectiveness of the AT
intervention in the management of knee osteoarthritis and also to identify a possible
mechanism of action.
Methods
A cohort of 21 participants with confirmed knee osteoarthritis were given 20 lessons of
instruction in the Alexander Technique. In addition to clinical outcomes EMG data,
quantifying knee muscle co-contraction and EEG data, characterising brain activity
during anticipation of pain, were collected. All data were compared between baseline
and post-intervention time points with a further 15-month clinical follow up. In addition,
biomechanical data were collected from a healthy control group and compared with the
data from the osteoarthritis subjects.
Results:
Following AT instruction the mean WOMAC pain score reduced by 56% from 9.6 to 4.2
(P<0.01) and this reduction was maintained at 15 month follow up. There was a clear
decrease in medial co-contraction at the end of the intervention, towards the levels
observed in the healthy control group, both during a pre-contact phase of gait (p<0.05)
and during early stance (p<0.01). However, no changes in pain-anticipatory brain
activity were observed. Interestingly, decreases in WOMAC pain were associated with
reductions in medial co-contraction during the pre-contact phase of gait.
Conclusions:
This is the first study to investigate the potential effectiveness of an intervention aimed
at increasing awareness of muscle behaviour in the clinical management of knee
osteoarthritis. These data suggest a complex relationship between muscle contraction,
joint loading and pain and support the idea that excessive muscle co-contraction may
be a maladaptive response in this patient group. Furthermore, these data provide
evidence that, if the activation of certain muscles can be reduced during gait, this may
lead to positive long-term clinical outcomes. This finding challenges clinical
management models of knee osteoarthritis which focus primarily on muscle
strengthening
Altered DNA methylation associated with a translocation linked to major mental illness
Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA). We found significant differences in DNA methylation when translocation carriers (n = 17) were compared to related non-carriers (n = 24) at 13 loci. All but one of the 13 significant differentially methylated positions (DMPs) mapped to the regions surrounding the translocation breakpoints. Methylation levels of five DMPs were associated with genotype at SNPs in linkage disequilibrium with the translocation. Two of the five genes harbouring significant DMPs, DISC1 and DUSP10, have been previously shown to be differentially methylated in schizophrenia. Gene Ontology analysis revealed enrichment for terms relating to neuronal function and neurodevelopment among the genes harbouring the most significant DMPs. Differentially methylated region (DMR) analysis highlighted a number of genes from the MHC region, which has been implicated in psychiatric illness previously through genetic studies. We show that inheritance of a translocation linked to major mental illness is associated with differential DNA methylation at loci implicated in neuronal development/function and in psychiatric illness. As genomic rearrangements are over-represented in individuals with psychiatric illness, such analyses may be valuable more widely in the study of these conditions
Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters
BACKGROUND: Impulsivity is defined as intolerance/aversion to waiting for reward. In intolerance-to-delay (ID) protocols, animals must choose between small/soon (SS) versus large/late (LL) rewards. In the probabilistic discount (PD) protocols, animals are faced with choice between small/sure (SS) versus large/luck-linked (LLL) rewards. It has been suggested that PD protocols also measure impulsivity, however, a clear dissociation has been reported between delay and probability discounting. RESULTS: Wistar adolescent rats (30- to 46-day-old) were tested using either protocol in drug-free state. In the ID protocol, animals showed a marked shift from LL to SS reward when delay increased, and this despite adverse consequences on the total amount of food obtained. In the PD protocol, animals developed a stable preference for LLL reward, and maintained it even when SS and LLL options were predicted and demonstrated to become indifferent. We demonstrate a clear dissociation between these two protocols. In the ID task, the aversion to delay was anti-economical and reflected impulsivity. In the PD task, preference for large reward was maintained despite its uncertain delivery, suggesting a strong attraction for unitary rewards of great magnitude. CONCLUSION: Uncertain delivery generated no aversion, when compared to delays producing an equivalent level of large-reward rarefaction. The PD task is suggested not to reflect impulsive behavior, and to generate patterns of choice that rather resemble the features of gambling. In summary, present data do indicate the need to interpret choice behavior in ID and PD protocols differently
Role of Wnt canonical pathway in hematological malignancies
Wnt canonical signaling pathway plays a diverse role in embryonic development and maintenance of organs and tissues in adults. It has been observed that Wnt/β-catenin signaling pathway is involved in the pathogenesis of many carcinomas. Moreover, Wnt/β-catenin pathway has been revealed to be associated with angiogenesis. Wnt canonical pathway signaling has great potential as a therapeutic target. It has been disclosed that some hematological malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, may occur partly due to the constitutive activation of Wnt canonical signaling pathway. This review will summarize the latest development in Wnt canonical signaling pathway and its roles in tumorigenesis and angiogenesis
Type I Interferon: Potential Therapeutic Target for Psoriasis?
Background: Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. Methodology/Principal Findings: We observed robust overexpression of type I interferon (IFN)–inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-a subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN–inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-c and TNF-a–inducible gene signatures occurred at the same disease sites. Conclusions/Significance: Up-regulation of TNF-a and elevation of the TNF-a–inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti–TNF-a agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may b
Recommended from our members
Computational Models of Classical Conditioning guest editors’ introduction
In the present special issue, the performance of current computational models of classical conditioning was evaluated under three requirements: (1) Models were to be tested against a list of previously agreed-upon phenomena; (2) the parameters were fixed across simulations; and (3) the simulations used to test the models had to be made available. These requirements resulted in three major products: (a) a list of fundamental classical-conditioning results for which there is a consensus about their reliability; (b) the necessary information to evaluate each of the models on the basis of its ordinal successes in accounting for the experimental data; and (c) a repository of computational models ready to generate simulations. We believe that the contents of this issue represent the 2012 state of the art in computational modeling of classical conditioning and provide a way to find promising avenues for future model development
- …