1,200 research outputs found

    Bailouts in a common market: a strategic approach

    Get PDF
    Governments in the EU grant Rescue and Restructure Subsidies to bail out ailing firms. In an international asymmetric Cournot duopoly we study effects of such subsidies on market structure and welfare. We adopt a common market setting, where consumers from the two countries form one market. We show that the subsidy is positive also when it fails to prevent the exit. The reason is a strategic effect, which forces the more efficient firm to make additional cost-reducing effort. When the exit is prevented, allocative and productive efficiencies are lower and the only gaining player is the rescued firm

    Mathematical Model of Easter Island Society Collapse

    Full text link
    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society, starting from the fifth century until the last period of the society collapse (fifteen century). Based on historical reports, the available primary sources consisted almost exclusively on the trees. We describe the inhabitants and the resources as an isolated system and both considered as dynamic variables. A mathematical analysis about why the structure of the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters driving the interaction humans-environment and consequently leading to the collapse. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of other extinguished civilization (Cop\'an Maya) confirming, with a sufficiently precise estimation, the consistency of the adopted model.Comment: 9 pages, 1 figure, final version published on EuroPhysics Letter

    Rip current types, circulation and hazard

    Get PDF
    AbstractRip currents are narrow and concentrated seaward-directed flows that extend from close to the shoreline, through the surf zone, and varying distances beyond. Rip currents are ubiquitous on wave-exposed coasts. Each year they cause hundreds of drowning deaths and tens of thousands of rescues on beaches worldwide and are therefore the leading deadly hazard to recreational beach users. The broad definition above masks considerable natural variability in terms of rip current occurrence in time and space, flow characteristics and behaviour. In particular, surf-zone rip currents have long been perceived as narrow flows extending well beyond the breakers, flushing out the surf zone at a high rate (‘exit flow’ circulation regime), while more recent studies have shown that rip flow patterns can consist of quasi-steady semi-enclosed vortices retaining most of the floating material within the surf zone (‘circulatory flow’ circulation regime). Building upon a growing body of rip current literature involving numerical modelling and theory together with emergence of dense Lagrangian field measurements, we develop a robust rip current type classification that provides a relevant framework to understand the primary morphological and hydrodynamic parameters controlling surf-zone rip current occurrence and dynamics. Three broad categories of rip current types are described based on the dominant controlling forcing mechanism. Each category is further divided into two types owing to different physical driving mechanisms for a total of six fundamentally different rip current types: hydrodynamically-controlled (1) shear instability rips and (2) flash rips, which are transient in both time and space and occur on alongshore-uniform beaches; bathymetrically-controlled (3) channel rips and (4) focused rips, which occur at relatively fixed locations and are driven by hydrodynamic processes forced by natural alongshore variability of the morphology in both the surf zone and inner shelf zone; and boundary-controlled (5) deflection rips and (6) shadow rips, which flow against rigid lateral boundaries such as natural headlands or anthropogenic structures. For each rip current type, flow response to changes in hydrodynamic and morphologic forcing magnitude is examined in regard to velocity modulation and changes in circulation regime, providing key force-response relationships of rip currents. We also demonstrate that in the real world, rip currents form through a mixture of driving mechanisms and the discrete rip types defined in fact form key elements in a wide and complex spectrum of rip currents on natural beaches. It is anticipated that this rip current type classification will serve as a resource for coastal scientists and non-specialists with an interest in the rip current hazard, and as a platform for future rip current studies. Finally, we suggest some important future research directions highlighting the need for coastal and beach safety communities to collaborate in order to improve rip current education and awareness

    Surveying rip current survivors: Preliminary insights into the experiences of being caught in rip currents

    Get PDF
    This paper begins a process of addressing a significant gap in knowledge about people's responses to being caught in rip currents. While rip currents are the primary hazard facing recreational ocean swimmers in Australia, debate exists about the best advice to give swimmers caught in rip currents. Such surf rescue advice - on what to do and how to respond when caught in a rip - relies on empirical evidence. However, at present, knowledge about swimmers reactions and responses to rip currents is limited. This gap is a considerable barrier to providing effective advice to beach goers and to understanding how this advice is utilised (or not) when actually caught in the rip current. This paper reports the findings of a pilot study that focussed on garnering a better understanding of swimmers' experiences when caught in rip currents. A large scale questionnaire survey instrument generated data about rip current survivors' demographics, knowledge of beach safety and their reactions and responses when caught in a rip current. A mix of online and paper surveys produced a total of 671 completed surveys. Respondents were predominantly an informed group in terms of rip current knowledge, beach experience and had a high self-rated swimming ability. Preliminary insights from the survey show that most respondents recalled a "swim across the rip/parallel to the beach" message when caught in the rip and most escaped unassisted by acting on this message. However, while nearly a quarter of respondents recalled a message of "not to panic", short answer responses revealed that the onset of panic inhibited some respondents from recalling or enacting any other type of beach safety message when caught in the rip current. Results also showed that despite the research sample being younger, competent and frequent ocean swimmers, they were more likely to swim at unpatrolled beaches and outside of the red and yellow safety flags. Moreover, they were still caught in a rip current and they panicked. The findings of this study have significant implications for a range of demographic groups of differing beach safety knowledge and swimming ability who may be caught in rip currents behave, we know very little about how beach goers may respond to being caught in them. © 2012 Author(s)

    Acta societatis pro fauna et flora Fennica 67

    Get PDF
    Kielet ruotsi ja saksa

    Orbital characterization of GJ1108A system, and comparison of dynamical mass with model-derived mass for resolved binaries

    Full text link
    We report an orbital characterization of GJ1108Aab that is a low-mass binary system in pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of ee=0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (Mdynamical,GJ1108Aa=0.72±0.04M⊙M_{\rm dynamical,GJ1108Aa}=0.72\pm0.04 M_{\odot} and Mdynamical,GJ1108Ab=0.30±0.03M⊙M_{\rm dynamical,GJ1108Ab}=0.30\pm0.03 M_{\odot}) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider the discrepancy in mass comparison can attribute to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.Comment: Accepted in Ap

    Supernova 1987A: Rotation and a Binary Companion

    Full text link
    In this paper we provide a possible link between the structure of the bipolar nebula surrounding SN1987A and the properties of its progenitor star. A Wind Blwon Bubble (WBB) scenario is emplyed, in which a fast, tenuous wind from a Blue Supergiant expands into a slow, dense wind, expelled during an earlier Red Supergiant phase. The bipolar shapre develops due to a pole-to-equator density contrast in the slow wind (ie, the slow wind forms a slow torus). We use the Wind Compressed Disk (WCD) model of Bjorkman & Cassinelli (1992) to determine the shape of the slow torus. In the WCD scenario, the shape of the torus is determined by the rotation of the progenitor star. We then use a self-similar semi-analytical method for wind blown bubble evolution to determine the shape of the resulting bipolar nebula. We find that the union of the wind-compressed-disk and bipolar-wind-blown- bubble models allows us to recover the salient properties of SN1987A's circumstellar nebula. In particular, the size, speed and density of SN1987A's inner ring are easily reproduced in our calculations. An exploration of parameter space shows the the red supergiant progenitor must be been rotating at > 0.3 of its breakup speed. We conclude that the progenitor was most likely spun up by a merger with a binary companion. Using a simple model for the binary merger we find that the companion is likely to have had a mass > 0.5 M_sun.Comment: 30 pages, 4 figure

    Modelling the alongshore variability of optimum rip current escape strategies on a multiple rip-channelled beach

    Get PDF
    Rip currents are a leading cause of drowning on beaches worldwide. How bathers caught in a rip current should attempt to escape has been a subject of recent debate. A numerical model of human bathers escaping from a rip current flow field is applied to a 2-km long section of the open beach of Biscarrosse, SW France. The study area comprises 4 rip channels that visually appear similar from the beach, but exhibit different morphologies. Simulations are run for 2 representative hazardous summer wave conditions. Results show that small changes in the bar/rip morphology have a large impact on the rip flow field, and in turn on the alongshore variability of the optimal rip current escape strategy. The overall flow regime (dominant surf-zone exits versus dominant recirculation), which is found to be influenced by the alongshore dimensions of the sand bars adjacent to the rip channel, is more important to rip current escape strategy than rip velocity. Flow regime was found to dictate the success of the stay afloat strategy, with greater success for recirculating flow. By comparison, the dominant longshore feeder current and rip-neck orientation determined the best direction to swim parallel toward. For obliquely incident waves, swim parallel downdrift then swim onshore with breaking waves was highly successful and can become a simple safety message for beach safety practitioners to communicate to the general public. However, in SW France where rip spacing is large (∼400 m), surf-zone eddies have large spatial scales of the order of 100+ m, requiring a large distance (100+ m) to swim to reach safety, therefore requiring good swimming ability. This also shows that in addition to rip current intensity, rip flow regime and the depth of adjacent sand bars, rip spacing is important for defining rip current hazard and the best safety message. Our results also indicate that for normal to near-normal wave incidence, rip current hazard and best rip current escape strategy are highly variable alongshore due to subtle differences in bar/rip morphology from one rip system to another. These findings challenge the objective of developing a universal rip current escape strategy message on open rip-channelled beaches exposed to normal to near-normal wave incidence, even for seemingly similar rip channels
    • …
    corecore