6 research outputs found

    Restriction of HIV-1 Requires the N-Terminal Region of MxB as a Capsid-Binding Motif but Not as a Nuclear Localization Signal

    No full text
    International audienceThe interferon alpha (IFN-α)-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Fate-of-capsid experiments have correlated the ability of MxB to block HIV-1 infection with stabilization of viral cores during infection. We previously demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization. Deletion and gain-of-function experiments have mapped the HIV-1 restriction ability of MxB to its N-terminal 25 amino acids. This report reveals that the N-terminal 25 amino acids of MxB exhibit two separate functions: (i) the ability of MxB to bind to HIV-1 capsid and (ii) the nuclear localization signal of MxB, which is important for the ability of MxB to shuttle into the nucleus. To understand whether MxB restriction of HIV-1 requires capsid binding and/or nuclear localization, we genetically separated these two functions and evaluated their contributions to restriction. Our experiments demonstrated that the (11)RRR(13) motif is important for the ability of MxB to bind capsid and to restrict HIV-1 infection. These experiments suggested that capsid binding is necessary for the ability of MxB to block HIV-1 infection. Separately from the capsid binding function of MxB, we found that residues (20)KY(21) regulate the ability of the N-terminal 25 amino acids of MxB to function as a nuclear localization signal; however, the ability of the N-terminal 25 amino acids to function as a nuclear localization signal was not required for restriction. IMPORTANCE MxB/Mx2 blocks HIV-1 infection in cells from the immune system. MxB blocks infection by preventing the uncoating process of HIV-1. The ability of MxB to block HIV-1 infection requires that MxB binds to the HIV-1 core by using its N-terminal domain. The present study shows that MxB uses residues (11)RRR(13) to bind to the HIV-1 core during infection and that these residues are required for the ability of MxB to block HIV-1 infection. We also found that residues (20)KY(21) constitute a nuclear localization signal that is not required for the ability of MxB to block HIV-1 infection

    Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55 alpha holoenzymes during mitotic exit

    No full text
    SAMHD1 is a critical restriction factor for HIV-1 in non-cycling cells and its antiviral activity is regulated by T592 phosphorylation. Here, we show that SAMHD1 dephosphorylation at T592 is controlled during the cell cycle, occurring during M/G1 transition in proliferating cells. Using several complementary proteomics and biochemical approaches, we identify the phosphatase PP2A-B55α responsible for rendering SAMHD1 antivirally active. SAMHD1 is specifically targeted by PP2A-B55α holoenzymes during mitotic exit, in line with observations that PP2A-B55α is a key mitotic exit phosphatase in mammalian cells. Strikingly, as HeLa or activated primary CD4+ T cells enter the G1 phase, pronounced reduction of RT products is observed upon HIV-1 infection dependent on the presence of dephosphorylated SAMHD1. Moreover, PP2A controls SAMHD1 pT592 level in non-cycling monocyte-derived macrophages (MDMs). Thus, the PP2A-B55α holoenzyme is a key regulator to switch on the antiviral activity of SAMHD1.status: publishe

    The ribonuclease activity of SAMHD1 is required for HIV-1 restriction

    No full text
    The HIV-1 restriction factor SAM domain– and HD domain–containing protein 1 (SAMHD1)1,2 is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool3–5. However, phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels6–8, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1 for defects in RNase or dNTPase activity, we identify SAMHD1 point mutants that cause loss of one or both functions. The RNase-positive and dNTPase-negative SAMHD1D137N mutant is able to restrict HIV-1 infection, whereas the RNase-negative and dNTPase-positive SAMHD1Q548A mutant is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of cell infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in cells and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA.11341421sciescopu
    corecore